首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated fluoride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40 degrees C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

2.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

3.
Adenylate cyclase in the membrane fractions of bovine and rat brains, but not in rat liver plasma membranes, was solubilized by treatment with Fe2+ (10 μM) plus dithiothreitol (5 mM). Solubilization of the enzyme by these agents was completely prevented by simultaneous addition of N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation. Ascorbic acid also solubilized the enzyme from the brain membranes. Lipid peroxidation of the brain membranes was characterized by a selective loss of phosphatidylethanolamine. Solubilization of membrane-bound enzymes by Fe2+ plus dithiothreitol was not specific for adenylate cyclase, because phosphodiesterase, thiaminediphosphatase and many other proteins were also solubilized. Solubilized adenylate cyclase had a high specific activity and was not activated by either NaF, 5′-guanylyl imidodiphosphate (Gpp[NH]p) or calmodulin. These results suggested that lipid peroxidation of the brain membranes significantly solubilized adenylate cyclase of high specific activity.  相似文献   

4.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

5.
Partially purified rat liver plasma membranes were enriched to yield a more glucagon-sensitive membrane fraction which was solubilized with Lubrol-PX. The supernate obtained after centrifugation at 165,000g was subjected to O-diethylaminoethyl anion exchange chromatography. An adenylate cyclase fraction was eluted and purified further by chromatography on agarose-hexane-GTP. The enzyme adsorbed to the affinity resin and was eluted with 0.5 m Tris-HCl. The protein isolated by chromatography on the affinity resin was homogenous by conventional acrylamide gel electrophoresis; one band was observed in sodium dodecyl sulfate. The purified enzyme was free of nucleotide phosphohydrolases found in the parent solubilized membrane preparation. The anion exchange product was not sensitive to glucagon; Lubrol-PX and 5′-guanylylimidodiphosphate [Gpp(NH)p] decreased the activity of this fraction. In the presence of detergent or guanyl nucleotide, glucagon, at 10?6m, increased enzyme activity by 30 and 21%, respectively, to a statistically significant degree, but not above basal levels. Adenylate cyclase was also purified by subjecting the 165,000g supernate directly to agarose-hexane-GTP; agarose-hexane-ATP or agarose-hexane was not effective. The affinity-derived material was associated with 85 nmol of Lubrol-PX/mg of protein. When calculated on the basis of a molecular weight of 150,000 for detergent-free protein after gel filtration on Bio-Gel A-0.5 m, there was 13 mol of detergent/mol of the enzyme obtained by chromatography on the affinity resin. The direct affinity product was insensitive to glucagon and Gpp(NH)p; enzyme activity varied as a function of Lubrol concentration.  相似文献   

6.
Adenylate cyclase in rat adipocyte membranes was inactivated as a result of treatment with sulfhydryl oxidants or with p-chloromercuribenzoate as well as by S-alkylating agents. The inhibition of the basal and isoproterenol- or glucagon-stimulated enzyme activity by the oxidants or the mercurial could be reversed by adding thiols to the isolated membranes. The activity of the enzyme paralleled the cellular glutathione (GSH) content. Lowering of intracellular glutathione by incubating the cells with specific reactants resulted in the inhibition of both basal and hormone-stimulated adenylate cyclase activity in the isolated membranes. Activity could be partly restored by supplying glucose to the incubation medium of intact cells. The fluoride-stimulated adenylate cyclase was also inhibited by the oxidants or the sulfhydryl inhibitors. The results suggest that adenylate cyclase may be partly regulated by oxidation-reduction. Thus, a direct relationship between both basal and hormone-stimulated adenylate cyclase activity and the cellular redox potential, determined by the cellular level of reduced glutathione, may be ascribed to the protection of the catalytic -SH groups of the enzyme from oxidative or peroxidative reactions and maintenance of the redox optimum for the reaction.  相似文献   

7.
The specific activity of adenylate cyclase in membrane preparations obtained from Rous Sarcoma virus-transformed chicken embryo fibroblasts is two to four times lower than that found in untransformed membranes. Adenylate cyclase was solubilized from normal and transformed membranes in order to evaluate the influence of the membrane phase on the properties of the enzyme. Adenylate cyclase in normal and transformed membranes differed in specific activity, V for ATP, activation entropies, sensitivity to Ca2+, and stability at 37 degrees C. Solubilization with Brij 96 abolished or greatly reduced these differences. These data suggest that the differences between adenylate cyclase activities in normal and transformed chicken embryo fibroblasts are due either to differential modulation of enzyme activity by an effector which requires intact membranes for its effects, or indirect effects due to altered membrane properties.  相似文献   

8.
1. Guanylate cyclase of every fraction studied showed an absolute requirement for Mn2+ ions for optimal activity; with Mg2+ or Ca2+ reaction was barely detectable. Triton X-100 stimulated the particulate enzyme much more than the supernatant enzyme and solubilized the particulate-enzyme activity. 2. Substantial amounts of guanylate cyclase were recovered with the washed particulate fractions of cardiac muscle (63-98%), skeletal muscle (77-93%), cerebral cortex (62-88%) and liver (60-75%) of various species. The supernatants of these tissues contained 7-38% of total activities. In frog heart, the bulk of guanylate cyclase was present in the supernatant fluid. 3. Plasma-membrane fractions contained 26, 21, 22 and 40% respectively of the total homogenate guanylate cyclase activities present in skeletal muscle (rabbit), cardiac muscle (guinea pig), liver (rat) and cerebral cortex (rat). In each case, the specific activity of this enzyme in plasma membranes showed a five- to ten-fold enrichment when compared with homogenate specific activity. 4. These results suggest that guanylate cyclase, like adenylate cyclase, and ouabain-sensitive Na+ + K+-dependent ATPase (adenosine triphosphatase), is associated with the surface membranes of cardiac muscle, skeletal muscle, liver and cerebral cortex; however, considerable activities are also present in the supernatant fractions of these tissues which contain very little adenylate cyclase or ouabain-sensitive Na+ + K+-dependent ATPase activities.  相似文献   

9.
Adenylate cyclase activities in membranes prepared from Rous sarcoma-transformed chicken embryo fibroblasts are 2 to 4 times lower than in membranes prepared from normal chicken embryo fibroblasts. Adenylate cyclase activities were solubilized from normal and transformed membranes with five different nonionic detergents. In all cases, the specific activities of the enzyme solubilized from normal and transformed preparations were essentially identical. These data suggest that the microenvironment of adenylate cyclase in transformed membranes may be wholly or partially responsible for the decreased activities of this enzyme.  相似文献   

10.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

11.
The isoproterenol- and glucagon-stimulated adenylate cyclase activities in the myocardial membranes of hypertensive rat were consistantly lower as compared with normal controls. Addition of cytosolic fraction (100,000 xg supernatant) to the particulate preparation had an additive effect for glucagon and Gpp(NH)p stimulated enzyme activity and a synergistic effect for isoproterenol stimulation. Cytosolic fraction of normal control animals did not bring the adenylate cyclase activity in SHR equivalent to the control values. The basal and F?-stimulated enzyme activity of solubilized adenylate cyclase was reduced by about 30% in SHR as compared with WKY, which could be due to a decrease in the actual amount of adenylate cyclase in the myocardium of SHR.  相似文献   

12.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

13.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

14.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

15.
Low concentrations of Mn2+ supported the basal adenylate cyclase activity in crude and purified sarcolemmal membranes from cardiac muscle more effectively than did relatively high concentrations of Mg2+; at saturating concentrations the cyclase activities obtained with Mg2+ or Mn2+ were similar. In contrast, Mg2+ supported the basal cyclase activities of crude membrane fractions and purified sarcolemmal membranes from skeletal muscle far more effectively than did Mn2+; at saturating concentrations of either metal ion the Mg2+-supported cyclase activities were 5- to 10-fold greater than Mn2+-supported activities. Further, compared to Mg2+, Mn2+ supported the cyclase activities very poorly in all the primary subcellular fractions of skeletal muscle, whereas this cation was at least as effective as Mg2+ in all fractions of cardiac muscle. The apparent affinities of the cyclase for Mn2+ in heart as well as skeletal muscle appeared to be greater compared to those for Mg2+. The skeletal muscle cyclase displayed greater apparent affinity for MnATP2? (app. Km 0.10 mm) compared to MgATP2? (app. Km 0.32 mm) whereas the heart enzyme displayed greater apparent affinity for MgATP2? (app. Km 0.07 mm) compared to MnATP2? (app. Km 0.19 mm). Following preactivation with guanyl-5′-yl imidodiphosphate and isoproterenol, Mn2+ (0.15 to 2 mm) supported the cyclase activity of skeletal muscle even more effectively than did optimally effective concentrations of Mg2+. With the heart enzyme the relatively greater potency of Mn2+ persisted following preactivation. Significant enhancement in the Mn2+-sensitivity of skeletal muscle cyclase was also observed when assayed in the presence of GTP and isoproterenol or in the presence of NaF. Preactivation of both heart and skeletal muscle cyclases caused selective enhancement in the enzyme's apparent affinity for free Me2+ (Mg2+ or Mn2+) without influencing the apparent Km for MeATP2? (MgATP2? or MnATP2?). Evidences were obtained to show that the poor effectiveness of Mn2+ in supporting the basal activity of skeletal muscle cyclase is not related to (a) potentiation by Mn2+ of adenosine-mediated inhibition of the cyclase, (b) Mn2+-induced lability of the cyclase, (c) indirect effects of Mn2+ on ATP-regenerating system, or (d) the presence of different cation-specific molecular forms of the cyclase. It is also shown that the onset of enhanced Mn2+ sensitivity of the skeletal muscle enzyme following preactivation is not accompanied by a general loss of cation specificity of the cyclase. These results suggest that cations support the catalytic activity of adenylate cyclase by interacting with an enzymeregulatory free metal binding site and that the differential cation sensitivity of nonactivated (basal) cyclases from heart and skeletal muscle is likely due to differences in the properties of such an allosteric metal site. Furthermore, the metal site appears to undergo a conformational change following interaction of the cyclase system with the guanyl nucleotide and isoproterenol since the cation sensitivity of the cyclase and the relative potency of cations depend on the conformational status of the enzyme.  相似文献   

16.
Liver plasma membranes isolated from hypophysectomized rats were treated with 0.1 M Lubrol-PX, a nonionic detergent, and centrifuged at 165,000 × g for 1 hour. Adenylate cyclase activity remaining in the supernate had a specific activity that was at least equal to that of the particulate enzyme. The activity of the solubilized, non-sedimentable adenylate cyclase, as well as the membrane bound enzyme, was increased by GTP, ITP, and GMP-PCP at 10?4 M. The activity of the solubilized, non-sedimentable enzyme increased linearly with GTP from 10?6 to 10?4 M but there was no further increase in the activity of the solubilized enzyme with 10?3 M GTP. In contrast, the particulate liver membrane enzyme activity increased exponentially with GTP from 10?6 to 10?4 M and was further increased by 10?3 M GTP. These data indicate that GTP, ITP or GMP-PCP have direct effects on solubilized adenylate cyclase. This effect is in addition to a role of nucleotides in modifying membrane structure (16).  相似文献   

17.
1. Plasma membranes have been purified 17-fold from mouse parotid gland homogenates prepared in hypertonic sucrose media using differential centrifugation. The method is fast and simple. The membranes were characterised by electron microscopy, enzyme composition and chemical composition. Further purification was achieved by isopycnic centrifugation in discontinuous sucrose gradients. 2. The purified membranes contain an adenylate cyclase activity which is stimulated by isoproterenol and fluoride. Only 50% of the total adenylate cyclase activity sedimented in the plasma membrane fraction. The rest of the activity resided in the crude nuclear and mitochondrial pellets. However, this adenylate cyclase activity was not associated with these organelles but with membrane fragments in the pellets. Purified nuclei did not contain adenylate cyclase activity. 3. Adenylate cyclase activity was also localised by electron microscopic cytochemistry. Besides being found at the plasma membrane, large amounts of adenylate cyclase were found in a small proportion of the vesicles within the acinar cells, which appeared to be secondary lysosomes. 4. Adenylate cyclase activities, under standard assay conditions, are proportional to the time of incubation and the concentration of enzyme. The enzyme requires both Mg-2+ and CA-2+ for activity. Isoproterenol increased activity 2-fold and this increase is abolished by beta-adrenergic blocking agents.  相似文献   

18.
Mild proteolysis of membrane preparations from rat cerebral cortex with low concentrations of endopeptidases such as trypsin or chymotrypsin caused a 50–400% increase in the basal adenylate cyclase activity. Maximal activation of adenylate cyclase was obtained by including the protease in the adenylate cyclase assay, although an activated preparation could be obtained by pretreatment of the membranes with proteolytic enzymes. The proteolytically activated enzyme showed an increased V, with very little change in the Km for the substrate, ATP. The proteolytically activated enzyme retained responsiveness to activation by sodium fluoride and 5′-guanylylimidodiphosphate (GppNHp), but was no longer activated by gangliosides or calcium-dependent activator protein. Activation by alcohols and detergent was lost or reduced in magnitude. The activity of adenylate cyclase after protease treatment showed a very marked temperature dependence, with maximal activity expressed in the 30–40 °C range and no activation due to the prior protease treatment expressed at either 10 or 50 °C. Basal adenylate cyclase activity was usually slightly inhibited in the presence of various protease inhibitors. Activation by fluoride, gangliosides, or GppNHp was little affected by protease inhibitors although one inhibitor, N-α-tosyl-l-lysine chloromethyl ketone, caused an inhibition of the ganglioside and GppNHp responses, slightly inhibited the fluoride response, and blocked the norepinephrine response normally seen in the presence of gangliosides or GppNHp. This inhibitor caused a loss of β-adrenergic binding sites for dihydroalprenolol in rat cortical membranes which paralleled the loss of the responsiveness of adenylate cyclase to a GppNHp-norepinephrine combination.  相似文献   

19.
Adenylate cyclase activities have been assayed in the human fetal adrenal, heart ventricle, brain, liver, testis, kidney, skeletal muscle and lung during the first trimester of pregnancy. The requirements for adenylate cyclases are similar to those reported in all adult tissues. Of all tissues studied, heart ventricle had the highest level of enzymatic activity, and this tissue was most responsive to hormonal stimulation. Although adenylate cyclases from all of these tissues were stimulated by F?in vitro, hormonal stimulation was observed only in the liver, adrenal and heart ventricle. The presence of hormone-responsive adenylate cyclase in human fetal tissues suggests that cyclic AMP may be involved in gene expression.  相似文献   

20.
The role of cyclic nucleotides in the regulation of lymphocyte growth and differentiation remains controversial, as an adequate characterization of the key enzymes, adenylate cyclase and guanylate cyclase, in the plasma membrane of lymphocytes is still lacking. In this study, calf thymus lymphocytes were disrupted by nitrogen cavitation and various cellular fractions were isolated by differential centrifugation and subsequent sucrose density ultracentrifugation. As revealed by the chemical composition and the activities of some marker enzymes, the plasma membrane fraction proved to be highly purified. Nucleotide cyclases were present in the plasma membranes in high specific activities, basal activities of adenylate cyclase being 13.7 pmol/mg protein per min and 34.0 pmol/mg protein per min for the guanylate cyclase, respectively. Adenylate cyclase could be stimulated by various effectors added directly to the enzyme assay, including NaF, GTP, 5'-guanylyl imidodiphosphate, Mn2+ and molybdate. Addition of beta-adrenergic agonists only showed small stimulating effects on the enzyme activity in isolated plasma membranes. Basal activity of adenylate cyclase as well as activities stimulated by NaF or 5'-guanylyl imidodiphosphate exhibited regular Michaelis-Menten kinetics. Activation by both agents only marginally affected the Km values, but largely increased Vmax. The activity of the plasma membrane-bound guanylate cyclase was about 10-fold enhanced by the nonionic detergent Triton X-100 and high concentrations of lysophosphatidylcholine, but was slightly decreased upon addition of the alpha-cholinergic agonist carbachol. Basal guanylate cyclase indicated to be an allosteric enzyme, as analyzed by the Hill equation with an apparent Hill coefficient close to 2. In contrast, Triton X-100 solubilized enzyme showed regular substrate kinetics with increasing Vmax but unaffected Km values. Thus the lymphocyte plasma membrane contains both adenylate cyclase and guanylate cyclase at high specific activities, with properties characteristic for hormonally stimulated enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号