首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of administering high levels of folic acid to vitamin B12-deficient animals was studied. In B12 deficiency histidine oxidation is decreased. This is the result of both decreased liver folate levels and increases in the proportion of methyltetrahydrofolates. The purpose of this study was to determine if the addition of very high levels of folic acid to B12-deficient diets could increase liver folates and thereby restore histidine oxidation. Rats were fed a soy protein B12-deficient diet containing 10% pectin which has been shown previously to accelerate B12 depletion. When this diet was supplemented with B12 and folic acid, histidine oxidation was 5.4% in 2 h and the livers contained 3.49 micrograms of folate/g. In the absence of B12, the histidine oxidation rate was 0.34% and the liver folate level was 1.33 micrograms/g. When 200 mg/kg of folic acid was added to the B12-deficient diet there was no increase in histidine oxidation (0.35%) but the liver folates were increased to 3.68 micrograms which is about the same as that with B12 supplementation. The percentage tetrahydrofolate of the total liver folates was the same with and without a high level of dietary folic acid. Thus there was an increase in the absolute level of tetrahydrofolate without any increase in folate function as measured by histidine oxidation. Red cell folate levels were the same with and without B12, which is in contrast to the markedly lower liver folate levels in B12 deficiency. These data suggest a difference between B12 regulation of folate metabolism in the liver and in the bone marrow.  相似文献   

2.
The effects of thiouracil in correcting defects in folic acid function produced by B12 deficiency were studied. Addition of the thyroid inhibitor, thiouracil, to a low methionine diet containing B12, increased the oxidation of [2-14C]histidine to carbon dioxide, and increased liver folate levels. Addition of 10% pectin to the diet accentuated B12 deficiency as evidenced by a greatly decreased rate of histidine oxidation (0.19%) and an increased excretion of methylmalonic acid. Addition of thiouracil to the diet restored folate function as measured by increased histidine oxidation and increased liver folate levels similar to that produced by addition of methionine to a B12-deficient diet. Thiouracil decreased methylmalonate excretion, and increased hepatic levels of B12 in animals on both B12-deficient and -supplemented diets. Hepatic methionine synthase was increased by thiouracil, which may be the result of the elevated B12 levels. S-Adenosylmethionine and the enzyme methionine adenosyltransferase were also increased by thiouracil. Thus it is possible that the effect of thiouracil in increasing folate function consists both in the effect of thiouracil in decreasing levels of methylenetetrahydrofolate reductase, and also in its action in increasing S-adenosylmethionine which exerts a feedback inhibition of this enzyme.  相似文献   

3.
A previous experiment using rats indicated that dietary nickel (Ni), folic acid, and their interaction affected variables associated with one-carbon metabolism. That study used diets that produced only mild folate deficiency. Thus, an experiment was performed to determine the effect of a severe folate deficiency on nickel deprivation in rats. A 2×2 factorially arranged experiment used groups of six weanling Sprague-Dawley rats. Dietary variables were nickel, as NiCl2·6H2O, 0 or 1 μg/g and folic acid, 0 or 4 mg/kg. All diets contained 10 g succinylsulfathiazole/kg to suppress microbial folate synthesis. The basal diet contained <20 ng Ni/g. After 50 d, an interaction between nickel and folate affected the urinary excretion of formiminoglutamic acid (FIGLU) and the liver concentration of S-adenosylmethionine (SAM). Because of this, it is proposed that the physiological function of nickel is related to the common metabolism shared by SAM and FIGLU. Possibly the physiological function of nickel could be related to the tissue concentration of 5-methyltetrahydrofolate (MTHF) or tetrahydrofolate (THF).  相似文献   

4.
The effects of severe vitamin A deficiency (liver retinol less than 2 micrograms/g) on hepatic folate metabolism in rats were studied. The oxidation of a [ring-2-14C] histidine load or a [14C]formate load to 14CO2 was significantly depressed in vitamin A-deficient rats and those given histidine also excreted more urinary formiminoglutamic acid (FiGlu) than pair-fed controls. The increase in FiGlu excretion was not due to augmented production from histidine, implicating an impairment of FiGlu catabolism. FiGlu formiminotransferase activity was unaltered in vitamin A-deficient rats, but hepatic tetrahydrofolic acid (THF) concentration was decreased by 58% in vitamin A-deficient rats given a histidine load while 5-methyl-THF concentration was increased by 39%. Formyl-THF and total folate levels were similar to controls. A redistribution of folate coenzymes was not found in vitamin A-deficient rats not force fed histidine. A 43% decrease in 10-formyl-THF dehydrogenase activity, which generates both THF and the 14CO2 from the labeled substrates, and an 81% increase in 5,10-methylene-THF reductase activity, which generates 5-methyl-THF, were found in vitamin A-deficient rats. It appears that the production of severe vitamin A deficiency results in selective changes in the activities of hepatic folate-dependent enzymes, so that when a load of a one-carbon donor is given, THF concentration decreases and metabolism of the load is impaired.  相似文献   

5.
The effect of methionine supplementation on glycine and serine metabolism was studied in vitamin B-12-deficient rats which received only 0.2% methionine in the diet. In the perfused liver, incorporation of the C-2 of glycine to the C-3 of serine was increased by addition of methionine to the perfusate. The oxidation of [1-14C]glycine to 14CO2 was however depressed. Unlike methionine, glycine did not have any significant effect on the liver folate coenzyme distribution. Oxidation of [3-14C]serine to 14CO2 both in vivo and in perfused liver was increased by methionine. A major portion of the C-3 radioactivity however was recovered in glucose. Data presented indicate that the rate of oxidation of [2-14C]histidine to 14CO2 is a more sensitive indicator of folate deficiency than the rate of oxidation of [3-14C]serine to 14CO2 although both are presumably tetrahydrofolate dependent.  相似文献   

6.
A crude synthetic preparation called crude "X-methyl" folate has previously been shown to function as a folate antagonist for rats and chicks. This product has been shown to contain two folate antagonists: 9-methyl folate, present as 6% by weight of the product and which has low activity as a folate antagonist for Streptococcus faecalis, and pyrrofolic acid, a compound present in small amounts (0.04%), but having high anti-folate biological activity for S. faecalis. These experiments deal with the antifolate activity of these two fractions for the rat as measured by their effects on histidine oxidation. Rats were fed a purified diet based on 20% vitamin-free casein and containing 1.0% sulfasuxidine. When this diet was supplemented with a marginal amount of folic acid (0.3 mg per kg diet), the addition of 4 g of crude antagonist decreased histidine oxidation and decreased liver folate levels. The addition of 240 mg of pure 9-methyl folic acid (amount of 9-methyl folic acid in 4 g of crude) produced similar decreases in histidine oxidation and liver folate levels. A concentrate of pyrrofolic acid (equivalent to 4 g of crude) free of 9-methyl folic acid produced no decrease in histidine oxidation and minimal changes in liver folate. This indicates that the folate antagonist activity observed previously with animals is probably due to the 9-methyl folic acid component rather than to the pyrrofolic acid activity.  相似文献   

7.
1. Formiminoglutamic acid, a product of the catabolism of histidine, is excreted in abnormally large amounts in the urines of vitamin B(12)-deficient rats and of vitamin B(12)-deficient sheep; the excretion is reduced to negligible amounts after administration of vitamin B(12). 2. After administration of certain methyl donors to vitamin B(12)-deficient rats or sheep urinary excretion of formiminoglutamic acid is temporarily decreased. 3. Irrespective of the pteroylglutamic acid status of the animals neither vitamin B(12)-deficient rats nor vitamin B(12)-deficient sheep have the ability to deal efficiently with histidine. 4. In sheep, urinary excretion of formiminoglutamic acid is increased after administration of aminopterin; treatment with pteroylglutamic acid restores the ability of the animal to deal with the catabolic products of histidine. 5. The possible functions of vitamin B(12) and methionine in relieving a virtual deficiency of pteroylglutamic acid are discussed.  相似文献   

8.
The rôle of folic acid in wing formation was studied using amino-pterin—a folic acid antagonist. The effects of this antivitamin are acute: larviposition ceases in adults and wing formation is depressed in developing larvae. At lower concentrations graded responses are obtained. Omission of methionine and histidine had no effect on wing formation but thymidine did ameliorate the depression of wing formation by aminopterin.Aminopterin is known to inhibit dihydrofolate reductase—thereby inhibiting tetrahydrofolate production. Tetrahydrofolate is known to be involved in thymidine biosynthesis. The activity of dihydrofolate reductase in presumptive alates was 42 per cent higher than in larvae destined to develop as apterates. The significance of folic acid metabolism in wing formation is discussed.  相似文献   

9.
Folate metabolism in the rat was investigated using radiolabelled 5-methyltetrahydropteroylglutamate (5-CH3-H4PteGlu) and its oxidation products. 5-CH3-H4PteGlu is absorbed completely from the intestine, although in some preparations it is an equimolecular mixture of C-6 epimers, only one of which is naturally present in biological systems. The methyl group is incorporated into non-folate compounds, including methionine and creatine. No evidence was observed for the oxidation of the methyl group of 5-CH3-H4PteGlu to form other folate types. The tetrahydrofolate moiety of 5-CH3-H4PteGlu is metabolized in a similar manner to folic acid, forming formyl folates and tissue polyglutamates, and is catabolized by scission. The triazine oxidation product of 5-CH3-H4PteGlu is not metabolized by the rat or its gut microflora. 5-Methyl-5,6-dihydropteroylglutamate, however, is assimilated into the folate pool, but is substantially broken down by passage through the gut. The possible implication of this in scorbutic diets is discussed.  相似文献   

10.
The effect of methionine supplementation on glycine and serine metabolism was studied in vitamin B-12-deficient rats which received only 0.2% methionine in the diet. In the perfused liver, incorporation of the C-2 of glycine to the C-3 of serine was increased by addition of methionine to the perfusate. The oxidation of [1-14C]glycine to 14CO2 was however depressed. Unlike methionine, glycine did not have any significant effect on the liver folate coenzyme distribution. Oxidation of [3-14C]serine to 14CO2 both in vivo and in perfused liver was increased by methionine. A major portion of the C-3 radioactivity however was recovered in glucose. Data presented indicate that the rate of oxidation of [2-14C]histidine to 14CO2 is more sensitive indicator of folate deficiency than the rate of oxidation of [3-14C] serine to 14CO2 although both are presumably tetrahydrofolate dependent.  相似文献   

11.
Homozygous NEUT2 mice lack cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH; Champion et al. (1994) Proc. Natl. Acad. Sci. USA 91, 11,338-11,342) and as a consequence should be unable to oxidize carbon 2 of l-histidine to CO2 via 10-formyltetrahydrofolate in liver cytosol. There was essentially no oxidation of l-[2-14C]histidine to 14CO2 in homozygous NEUT2 mice, but 52% of the [2-14C]l-histidine dose was recovered in the urine within 24 h. Analysis of urine samples for [14C]formiminoglutamate, the expected excretion product, was negative; however, [14C]urocanic acid was detected. Investigation of histidine catabolism via the folate-dependent deamination pathway revealed no detectable urocanase activity in homozygous NEUT2 mice, while heterozygous NEUT2 mice had 50% urocanase activity compared to normal mice. Histidase and formiminotransferase-cyclodeaminase, also on the histidine deamination pathway, had similar specific activities in normal and NEUT2 mice. Histidine-pyruvate aminotransferase, the first enzyme of the alternate histidine transamination catabolic pathway did not appear to be affected by the loss of urocanase. Based on the excretion of urocanic acid it is estimated that NEUT2 mice catabolize approximately 40 micromol/day via the deamination pathway. The loss of urocanase activity in homozygous NEUT2 mice may allow these mice to survive the disruption in folate metabolism by sparing the liver cytosolic tetrahydrofolate pool.  相似文献   

12.
To study the effect of zinc deficiency on folate metabolism, three groups of male Sprague-Dawley rats (zinc deficient (ZD), restricted-fed (RF + Zn), and ad libitum-fed control (control] were given a semipurified 25% egg white protein diet. The ZD group received less than 10.3 nmol zinc/g of diet, while the RF + Zn and control groups were given 1620 nmol zinc/g of diet. After 6-7 weeks of feeding, severe zinc deficiency developed in ZD rats. Hepatic methionine synthetase activity was increased in the ZD group compared to both the RF + Zn and control groups, but hepatic 5,10-CH2-H4folate reductase activity was similar in all groups. This increased methionine synthetase activity found in zinc-deficient rats might induce secondary alterations in folate metabolism. These changes include significantly lowered plasma folate levels, decreased 5-CH3-H4folate in liver, and increased rates of histidine and formate oxidation. The latter two findings suggest that the available non-5-CH3-H4folate is increased in zinc deficiency.  相似文献   

13.
D Fell  R D Steele 《Life sciences》1986,38(21):1959-1965
Feeding rats a diet containing 1000 IU of retinol/g diet enhances the folate-dependent oxidation to CO2 of formate and histidine. The activity of hepatic methylenetetrahydrofolate reductase, which plays a critical role in the regulation of liver folate metabolism, is suppressed in these animals, resulting in decreased 5-methyltetrahydrofolate synthesis. This ensures a greater concentration of hepatic tetrahydrofolate, the coenzyme on which formate and histidine oxidation depend, but also compromises the level of S-adenosylmethionine in the liver.  相似文献   

14.
The amino acid histidine is metabolized to glutamic acid in mammalian tissue. Formiminoglutamic acid (FIGLU) is an intermediary in this reaction, and tetrahydrofolic acid is the coenzyme that converts it to glutamic acid. A test for folate deficiency concerns the measurement of urinary FIGLU excretion after a histidine load. It was observed that folate-deficient individuals receiving the histidine for the FIGLU test made hematological response that alleviated the anemia associated with this deficiency. This was unusual in that a biochemical test to determine the deficiency results in a beneficial effect for one aspect of the deficiency. The studies reported in this paper give a metabolic explanation for this phenomenon. Urine was collected for 24 hr from 25 folate-deficient subjects, 10 vitamin B(12)-deficient subjects, and 15 normal controls. Urinary excretion of histidine was a mean of 203 mg with a range of 130-360 mg for the folate-deficient subjects; 51.5 mg with a range of 30-76.6 mg for normal subjects; and 60.0 mg with a range of 32.3-93.0 mg for the vitamin B(12)-deficient subjects. All the folate-deficient subjects subsequently made a hematological response to the histidine administered for the FIGLU test. No hematological response was observed in the vitamin B(12)-deficient individuals. When folic acid was given to folate-deficient subjects who received no histidine, urinary histidine levels returned to normal levels rapidly and this was followed by a hematological response. Others have shown that volunteers fed a histidine-free diet developed anemia. In normal subjects, histidine is excreted much more in the urine than other essential amino acids are. Hemoglobin protein contains 10% histidine. Under normal conditions, dietary histidine can supply sufficient histidine to prevent anemia. When the dietary intake is diminished or the urinary excretion is greatly increased, anemia results. It is concluded that folate deficiency causes histidine depletion through increased urinary excretion of this amino acid. Feeding histidine replenishes tissue levels of histidine, resulting in hemoglobin regeneration. Folic acid administration results in return of histidine to normal urinary levels. Thus, a combination of folic acid histidine would be beneficial for folate deficient individuals.  相似文献   

15.
A. M. Shojania 《CMAJ》1982,126(3):244-247
Women who use oral contraceptives have impaired folate metabolism as shown by slightly but significantly lower levels of folate in the serum and the erythrocytes and an increased urinary excretion of formiminoglutamic acid. The vitamin B12 level in their serum is also significantly lower than that of control groups. However, there is no evidence of tissue depletion of vitamin B12 associated with the use of oral contraceptives. The causes and clinical significance of the impairment of folate and vitamin B12 metabolism in these women is discussed in this review of the literature. Clinicians are advised to ensure that women who shop taking "the pill" because they wish to conceive have adequate folate stores before becoming pregnant.  相似文献   

16.
We tested the hypothesis that the mechanism of action of the antifolate drug trimethoprim is through accumulation of bacterial dihydrofolate resulting in depletion of tetrahydrofolate coenzymes required for purine and pyrimidine biosynthesis. The folate pool of a strain of Escherichia coli (NCIMB 8879) was prelabeled with the folate biosynthetic precursor [(3)H]-p-aminobenzoic acid before treatment with trimethoprim. Folates in untreated E. coli were present as tetrahydrofolate coenzymes. In trimethoprim-treated cells, however, a rapid transient accumulation of dihydrofolate occurred, followed by complete conversion of all forms of folate to cleaved catabolites (pteridines and para-aminobenzoylglutamate) and the stable nonreduced form of the vitamin, folic acid. Both para-aminobenzoylglutamate and folic acid were present in the cell in the form of polyglutamates. Removal of trimethoprim resulted in the reconversion of the accumulated folic acid to tetrahydrofolate cofactors for subsequent participation in the one-carbon cycle. Whereas irreversible catabolism is probably bactericidal, conversion to folic acid may constitute a bacteriostatic mechanism since, as we show, folic acid can be used by the bacteria and proliferation is resumed once trimethoprim is removed. Thus, the clinical effectiveness of this important drug may depend on the extent to which the processes of either catabolism or folic acid production occur in different bacteria or during different therapeutic regimes.  相似文献   

17.
《The Journal of cell biology》1996,134(5):1169-1177
Previously, a high affinity, glycosylphosphatidylinositol-anchored receptor for folate and a caveolae internalization cycle have been found necessary for potocytosis of 5-methyltetrahydrofolate in MA104. We now show by cell fractionation that folate receptors also must be clustered in caveolae for potocytosis. An enriched fraction of caveolae from control cells retained 65-70% of the [3H]folic acid bound to cells in culture. Exposure of cells to the cholesterol-binding drug, filipin, which is known to uncluster receptors, shifted approximately 50% of the bound [3H]folic acid from the caveolae fraction to the noncaveolae membrane fraction and markedly inhibited internalization of [3H]folic acid. An mAb directed against the folate receptor also shifted approximately 50% of the caveolae-associated [3H]folic acid to noncaveolae membrane, indicating the antibody perturbs the normal receptor distribution. Concordantly, the mAb inhibited the delivery of 5-methyl[3H]tetrahydrofolate to the cytoplasm. Receptor bound 5- methyl[3H]tetrahydrofolate moved directly from caveolae to the cytoplasm and was not blocked by phenylarsine oxide, an inhibitor of receptor-mediated endocytosis. These results suggest cell fractionation can be used to study the uptake of molecules by caveolae.  相似文献   

18.
The toxicity of methanol   总被引:3,自引:0,他引:3  
T R Tephly 《Life sciences》1991,48(11):1031-1041
Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H4 folate). An excellent correlation between hepatic H4 folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H4 folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H4 folate concentrations, monkeys and humans also have low hepatic 10-formyl H4 folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.  相似文献   

19.
Folic acid fortification: why not vitamin B12 also?   总被引:1,自引:0,他引:1  
Folic acid fortification of cereal grains was introduced in many countries to prevent neural tube defect occurrence. The metabolism of folic acid and vitamin B12 intersect during the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine catalyzed by B12-dependent methioine synthase. Regeneration of tetrahydrofolate via this reaction makes it available for synthesis of nucleotide precursors. Thus either folate or vitamin B12 deficiency can result in impaired cell division and anemia. Exposure to extra folic acid through fortification may be detrimental to those with vitamin B12 deficiency. Among participants of National Health And Nutrition Examination Survey with low vitamin B12 status, high serum folate (>59 nmol/L) was associated with higher prevalence of anemia and cognitive impairment when compared with normal serum folate. We also observed an increase in the plasma concentrations of total homocysteine and methylmalonic acid (MMA), two functional indicators of vitamin B12 status, with increase in plasma folate under low vitamin B12 status. These data strongly imply that high plasma folate is associated with the exacerbation of both the biochemical and clinical status of vitamin B12 deficiency. Hence any food fortification policy that includes folic acid should also include vitamin B12.  相似文献   

20.
The relationship between vitamin B12 and folate and the effect of methionine on folate metabolism during B12 deficiency in rats is best explained by the prevention of the accumulation of 5-methyl-H4PteGlu by vitamin B12 and/or methionine. Although several points remain to be clarified, the 'methyl trap' hypothesis provides the most satisfactory explanation for the relation between vitamin B12, methionine and folic acid. This concept is extended by the hypothesis that H4PteGlu is the most active substrate for pteroylpolyglutamate synthetase, and thus accounts for the effect of methionine or vitamin B12 increasing liver folate levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号