首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-state hemoglobin with four ligands bound   总被引:8,自引:0,他引:8  
M C Marden  J Kister  B Bohn  C Poyart 《Biochemistry》1988,27(5):1659-1664
Flash photolysis kinetics have been measured for ligand recombination to hemoglobin (Hb) in the presence of two effectors: bezafibrate (Bzf) and inositol hexakisphosphate (IHP). The combined influence of the two independent effectors leads to predominantly T-state behavior. Samples equilibrated with 0.1 atm of CO are fully saturated, yet after photodissociation they show only T-state bimolecular recombination rates at all photolysis levels; this indicates that the allosteric transition from R to T occurs before CO rebinding and that the allosteric equilibrium favors the T-state tetramer with up to three ligands bound. Since all four ligands bind at the rate characteristic for the T-state, the return transition from T to R must occur after the fourth ligand was bound. At 1 atm of CO, rebinding to the initial R state competes with the allosteric transition resulting in a certain fraction of CO bound at the rate characteristic for the R state; this fraction is greater the smaller the percentage dissociation. Under 1 atm of oxygen, samples are not more than 93% saturated and show mainly T-state kinetics. The results show that all four hemes can bind oxygen or CO ligands in the T structure. The fraction of the kinetics occurring as geminate is less for partially liganded (T-state) samples than for fully liganded (R-state) Hb.  相似文献   

2.
The cooperative effect of inositol hexakisphosphate (IHP), bezafibrate (BZF), and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of IHP, BZF, and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of 2,3-diphosphoglycerate (2,3-DPG), which have been attributed to a low affinity conformation of the tetramer. Addition to HbNO of two allosteric effectors together (such as IHP and BZF, or IHP and CFA) further stabilizes the low affinity conformation of the ligated hemoprotein (i.e., HbNO). Moreover, in the presence of saturating amounts of IHP, the affinity of BZF and CFA for HbNO increases by about fifteenfold. Likewise, in the presence of both IHP and BZF, as well as in IHP and CFA, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced with respect to that observed in the presence of IHP, BZF, or CFA alone, which in turn is lower than that reported in the absence of any allosteric effector. All the data were obtained at pH 7.0 (in 1.0 × 10−1 M N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]/NaOH buffer system plus 1.0 × 10−1 M NaCl), as well as at 100 K and/or 20°C. The results here reported represent clearcut evidence for the cooperative and specific (i.e., functionally relevant) binding of IHP, BZF, and CFA to Hb.  相似文献   

3.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

4.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   

5.
The relative contributions of the allosteric and affinity factors toward the change in p50 have been calculated for a series of effectors of hemoglobin (Hb). Shifts in the ligand affinity of deoxy Hb and the values for 50% ligand saturation (p50) were obtained from oxygen equilibrium data. Because the high-affinity parameters (liganded conformation) are poorly determined from the equilibrium curves, they were determined from kinetic measurements of the association and dissociation rates with CO as ligand. The CO on-rates were obtained by flash photolysis measurements. The off-rates were determined from the rate of oxidation of HbCO by ferricyanide, or by replacement of CO with NO. The partition function of fully liganded hemoglobin for oxygen and CO is only slightly changed by the effectors. Measurements were made in the presence of the effectors 2,3-diphosphoglycerate (DPG), inositol hexakisphosphate (IHP), bezafibrate (Bzf), and two recently synthesized derivatives of Bzf (LR16 and L35). Values of p50 change by over a factor of 60; the on-rates decrease by nearly a factor of 8, with little change in the off-rates for the liganded conformation. The data indicate that both allosteric and affinity parameters are changed by the effectors; the changes in ligand affinity represent the larger contribution toward shifts in p50.  相似文献   

6.
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure‐function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy‐Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide‐angle X‐ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large‐scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.  相似文献   

7.
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Cytochrome oxidase of Thiobacillus ferrooxidans was partially purified. The oxidase preparation had haems a and c, and oxidized ferrocytochrome c-552 of the bacterium. The optimal pH of the reaction was 3.5. The enzyme also oxidized the reduced form of rusticyanin, a copper protein of the bacterium. Our results indicate that the reduction of molecular oxygen by this enzyme may occur in the periplasm.  相似文献   

9.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

10.
The kinetics of geminate recombination for the diliganded species alpha 2CO beta 2 and alpha 2 beta 2CO of human hemoglobin were studied using flash photolysis. The unstable diliganded species were generated just before photolysis by chemical reduction in a continuous flow reactor from the more stable valency hybrids alpha 2CO beta 2+ and alpha 2+ beta 2CO, which could be prepared by high pressure liquid chromatography. Before the flash photolysis studies, the hybrids had been characterized by double-mixing stopped-flow kinetics experiments. At pH 6.0 in the presence of inositol hexaphosphate (IHP) both of the diliganded species show second order kinetics for overall addition of a third CO that is clearly characteristic of the T state (l' = 1-2 x 10(5) M-1 s-1), whereas at higher pH and in the absence of IHP they show combination rates characteristic of an R state. The kinetics of geminate recombination following photolysis of a bound CO, however, showed little dependence on pH and IHP concentration. This surprising observation is explained on the basis that the kinetics of geminate recombination of CO primarily depends on the tertiary structure of the ligand binding site, which apparently does not differ much between the R state and the liganded T state formed on adding IHP in this system. Since this explanation requires distinguishing different tertiary structures within a particular quaternary structure, it amounts to a contradiction to the two-state allosteric model.  相似文献   

11.
The water-filled central cavity of human adult hemoglobin (Hb A) is the binding or interaction site for many different allosteric effectors. Oxygen binding titrations reveal that pyrenetetrasulfonate (PyTS), a fluorescent analogue of 2,3-diphosphoglycerate, behaves like an allosteric effector. The ligation state, pH, and concentrations of other effectors (IHP, L35, and chloride) alter PyTS fluorescence for both solution-phase and sol-gel-encapsulated Hb samples. These conditions also alter the resonance Raman spectra and rates of geminate recombination of CO-ligated Hb. Together, these results demonstrate that there are conformational and functional consequences resulting from interactions between specific domains of the central cavity and individual effectors as well as from long-range synergistic effects that are mediated through the central cavity.  相似文献   

12.
Enthalpies of inositol hexaphosphate (IHP) binding to deoxy and carbonmonoxy (CO) HbA and HbM Iwate have been determined calorimetrically and compared as functions of pH. Values for deoxy HbA and for deoxy HbM Iwate are similar with CO HbM Iwate yielding slightly less heat of reaction. The results support the existence of both deoxy and CO HbM Iwate in T-like structures with only minor modifications occurring upon CO binding. For HbA observed heats of IHP binding have been corrected for heats of extraction of reacting protons from buffer. The resulting intrinsic IHP binding enthalpies show consistent values of ?7 to ?11 kcal/mol proton absorbed in binding. We suggest that a major driving force for organic phosphate binding is the exothermic protonation of histidine and/or a α-amino nitrogens induced by proximity of phosphate negative charges.  相似文献   

13.
A new method for determination of the tetramer-dimer dissociation constant Ku4.2 of deoxyhemoglobin is described. The method involves photolysis of hemoglobin solutions containing a few percent of bound CO (e.g. less than 3%). Under these conditions the nature of the observed CO rebinding is primarily determined by the properties of the dominant species, deoxyhemoglobin. The method makes use of the 30-fold difference in the rate constant describing CO binding to hemoglobin dimers and deoxyhemoglobin tetramers. Because of this large difference in rate constants CO rebinding is made significantly more rapid by the presence of even small concentrations of dimers. Treating this reaction as CO binding to a mixture of hemoglobin dimers and tetramers allows the determination of Ku4.2. Data is presented showing application of the method to human deoxyhemoglobin in the range from pH 9.5 to 11.2.  相似文献   

14.
The changes of the Fe heme-active site conformation of dromedary (Camelus dromedarius) nitrosylhemoglobin (HbNO) induced by inositol hexakisphosphate (IHP) and chlofibric acid (CFA) have been studied by using X-ray absorption near-edge structure (XANES) spectroscopy. Structural information has been determined by multiple scattering analysis of the Fe K-edge XANES spectra. The proximal histidine is found to move away from iron centers by about 0.4 Angstrom on the average over the four hemes upon binding of CFA or stoichiometric amount of IHP. In molar excess of polyanion or in the simultaneous presence of IHP, CFA and chloride, the proximal histidine moves back to a position very close to that observed in pure buffer; yet, the structure modulation induced by the allosteric effectors is not completely reversible. Such findings parallel with the functional properties and the spectroscopic (e.g., EPR and absorbance) characteristics of HbNO.  相似文献   

15.
Nagatomo S  Nagai M  Shibayama N  Kitagawa T 《Biochemistry》2002,41(31):10010-10020
The alpha1-beta2 subunit contacts in the half-ligated hemoglobin A (Hb A) have been explored with ultraviolet resonance Raman (UVRR) spectroscopy using the Ni-Fe hybrid Hb under various solution conditions. Our previous studies demonstrated that Trpbeta37, Tyralpha42, and Tyralpha140 are mainly responsible for UVRR spectral differences between the complete T (deoxyHb A) and R (COHb A) structures [Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. (1999) Biochemistry, 38, 1243-1251]. On the basis of it, the UVRR spectra observed for the half-ligated alpha(Ni)beta(CO) and alpha(CO)beta(Ni) at pH 6.7 in the presence of IHP indicated the adoption of the complete T structure similar to alpha(Ni)beta(deoxy) and alpha(deoxy)beta(Ni). The extent of the quaternary structural changes upon ligand binding depends on pH and IHP, but their characters are qualitatively the same. For alpha(Ni)beta(Fe), it is not until pH 8.7 in the absence of IHP that the Tyr bands are changed by ligand binding. The change of Tyr residues is induced by binding of CO, but not of NO, to the alpha heme, while it was similarly induced by binding of CO and NO to the beta heme. The Trp bands are changed toward R-like similarly for alpha(Ni)beta(CO) and alpha(CO)beta(Ni), indicating that the structural changes of Trp residues are scarcely different between CO binding to either the alpha or beta heme. The ligand induced quaternary structural changes of Tyr and Trp residues did not take place in a concerted way and were different between alpha(Ni)beta(CO) and alpha(CO)beta(Ni). These observations directly indicate that the phenomenon occurring at the alpha1-beta2 interface is different between the ligand binding to the alpha and beta hemes and is greatly influenced by IHP. A plausible mechanism of the intersubunit communication upon binding of a ligand to the alpha or beta subunit to the other subunit and its difference between NO and CO as a ligand are discussed.  相似文献   

16.
We use laser flash photolysis and time-resolved Raman spectroscopy of CO-bound heme complexes to study proximal and distal influences on ligand rebinding kinetics. We report kinetics of CO rebinding to microperoxidase (MP) and 2-methylimidazole ligated Fe protoporphyrin IX in the 10 ns to 10 ms time window. We also report CO rebinding kinetics of MP in the 150 fs to 140 ps time window. For dilute, micelle-encapsulated (monodisperse) samples of MP, we do not observe the large amplitude geminate decay at approximately 100 ps previously reported in time-resolved IR measurements on highly concentrated samples [Lim, M., Jackson, T. A., and Anfinrud, P. A. (1997) J. Biol. Inorg. Chem. 2, 531-536]. However, for high concentration aggregated samples, we do observe the large amplitude picosecond CO geminate rebinding and find that it is correlated with the absence of the iron-histidine vibrational mode in the time-resolved Raman spectrum. On the basis of these results, the energetic significance of a putative distal pocket CO docking site proposed by Lim et al. may need to be reconsidered. Finally, when high concentration samples of native myoglobin (Mb) were studied as a control, an analogous increase in the geminate rebinding kinetics was not observed. This verifies that studies of Mb under dilute conditions are applicable to the more concentrated regime found in the cellular milieu.  相似文献   

17.
The effects of inositol hexaphosphate (IHP) and a second allosteric effector, bezafibrate, on the spin-state equilibria of the mixed-spin derivatives of ferric human hemoglobin A are examined. Changes in spin-state equilibrium are monitored by measuring absorption spectra in the visible region (460-700 nm) as well as by direct measurements of magnetic susceptibility by means of a superconducting fluxmeter. The addition of IHP at pH 6.5 results in a measurable shift in the spin equilibria of these derivatives toward higher spin. However, the addition of bezafibrate in the presence of IHP results in still larger shifts toward the high-spin form. The changes in the free energies of the spin-state equilibria resulting from the combination of these two effectors are similar in magnitude to that which results from the R-state to T-state transition in carp hemoglobin.  相似文献   

18.
The enzymatic reduction of aquomethemoglobin A, A1C, fluoro-methemoglobin A (high spin) and cyanomethemoglobin A (low spin) by NADH-methemoglobin reductase was studied in the presence and absence of IHP and NaCl. It is shown that at alkaline pH, IHP accelerates the rate of reduction of high spin methemoglobins only. This effect is specific for IHP and cannot be produced by NaCl, although NaCl does exert similar effect as IHP at acid pH. Blocking of the NH2- termini of β-chains (Hb A1C) does not alter the effect of IHP on methemoglobin reduction.  相似文献   

19.
Laser photolysis techniques have been employed to investigate the internal electron transfer (eT) reaction within Pseudomonas aeruginosa nitrite reductase (Pa-NiR). We have measured the (d1--> c) internal eT rate for the wild-type protein and a site-directed mutant (Pa-NiR H327A) which has a substitution in the d1-heme binding pocket; we found the rate of eT to be fast, keT = 2.5 x 10(4) and 3.5 x 10(4) s-1 for the wild-type and mutant Pa-NiR, respectively. We also investigated the photodissociation of CO from the fully reduced proteins and observed microsecond first-order relaxations; these imply that upon breakage of the Fe2+-CO bond, both Pa-NiR and Pa-NiR H327A populate a nonequilibrium state which decays to the ground state with a complex time course that may be described by two exponential processes (k1 = 3 x 10(4) s-1 and k2 = 0.25 x 10(4) s-1). These relaxations do not have a kinetic difference spectrum characteristic of CO recombination, and therefore we conclude that Pa-NiR undergoes structural rearrangements upon dissociation of CO. The bimolecular rate of CO rebinding is 5 times faster in Pa-NiR H327A than in the wild-type enzyme (1.1 x 10(5) M-1 s-1 compared to 2 x 10(4) M-1 s-1), indicating that this mutation in the active site alters the CO diffusion properties of the protein, probably reducing steric hindrance. CO rebinding to the wild-type mixed valence enzyme (c3+d12+) which is very slow (k = 0.25 s-1) is proposed to be rate-limited by the c --> d1 internal eT event, involving the oxidized d1-heme which has a structure characteristic of the fully oxidized and partially oxidized Pa-NiR.  相似文献   

20.
Oxygenated cytochrome o(s) from Vitreoscilla was photodissociated by a laser flash but the quantum yield was low. The rebinding of oxygen to the ferrous cytochrome proceeded monophasically, and the second order rate constant was 7.8 X 10(7) M-1 s-1, the off rate constant 5.6 X 10(3) s-1, and the calculated dissociation constant for the oxygenated compound 7.2 X 10(-5) M at pH 7.3 and 25 degrees C. Rapid scanning spectroscopy revealed the formation of chytochrome o-O2 directly from ferrous chytochrome o and oxygen without any evidence for an intermediary formation of Compound D, another type of oxygenated chytochrome o. Photodissociation in solution containing CO/O2 mixtures resulted in rapid binding of oxygen followed by slow replacement by CO. This property as well as the photodissociability of chytochrome o-O2 suggests that the heme iron of the compound is in the ferrous state. In addition, the primary oxygen compound was fairly stable and did not decay further in the absence of CO, in marked contrast with that of mammalian cytochrome oxidase primary oxygen compound which rapidly decayed. This result suggests a possible role of this cytochrome as an oxygen carrier or storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号