首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

2.
Ca2+ efflux from dog red blood cells loaded with Ca2+ using the A23187 ionophore could be separated into two main components: (1) Mg- and ATP-dependent (active transport) and (2) dependent on external Na (K1/2 around 15 mM); at 80 microM internal free Ca the relative magnitudes of these fluxes were 70% and 30% respectively. The Na-dependent Ca2+ efflux had the following additional properties: (i) it was partially inhibited by ATP depletion or preincubation with vanadate, but it was not affected by Mg2+ depletion; (ii) it failed to be stimulated by external monovalent cations other than Na: (iii) it was stimulated by reduction in the internal Na+ concentration. Both active and Na-dependent Ca2+ efflux remained unchanged in hypotonic solutions or in solutions with alkaline pH (8.5). In cells containing ATP and Mg2+, external Ca2+ inhibited Ca2+ efflux (K1/2 around 1 mM); on the other hand, in Mg-free dog red cells external Ca2+ stimulated Ca2+ efflux (K1/2 about 30 microM). In Mg-depleted red cells incubated in the absence of external Na2+, Ca2+ influx as a function of external Ca2+ followed a monotonically saturable function (K1/2 around 20 microM): addition of Na resulted in (i) inhibition of Ca2+ influx and (ii) a sigmoid relationship between flux and external Ca2+. Intracellular Ca2+ stimulated the external Na-dependent Ca2+ efflux along a sigmoid curve (K1/2 around 30 microM); on the other hand the Ca pump had a biphasic response to internal Ca2+: stimulation at low internal Ca2+ (K1/2 between 1 and 10 microM), followed by a decline at internal Ca2+ concentrations higher than 50 microM.  相似文献   

3.
Regulation of free cytosolic Ca2+ concentration in the rod outer segments (ROS) isolated from bovine retinas was examined with the fluorescent Ca(2+)-indicating dye fluo-3. In situ calibration of cytosolic fluo-3 was done in the presence of the Ca2+ ionophore A23187 and yielded a dissociation constant of 500 nM for the Ca(2+)-fluo-3 complex. Ca2+ influx in Ca(2+)-depleted ROS was completely abolished when internal Na+ was removed suggesting that Ca2+ influx exclusively occurred via Na-Ca-K exchange. The most striking observation was that Na-Ca-K exchange could mediate a rapid increase in cytosolic free Ca2+ over the most of the usable indicating range of fluo-3 (from 10 nM to 2 microM), even when exposed to free external Ca2+ concentrations as low as 10 nM. From a comparison between changes in free Ca2+ and changes in total Ca2+, we conclude that physiologically occurring changes in cytosolic free Ca2+ are mediated by exchange fluxes less than 1% of the maximal Na-Ca-K exchange flux. The Na-Ca-K exchanger could mediate both K(+)-dependent and K(+)-independent Ca2+ influx; Li+ caused a complete inhibition of K(+)-independent Ca2+ influx, but had no effect on K(+)-dependent Ca2+ influx. We examined the complex interactions of alkali cations with Ca2+ influx and discuss the results in terms of a three-site model for the Na-Ca-K exchanger (Schnetkamp, P. P. M. and Szerencsei, R. T. (1991) J. Biol. Chem. 266, 189-197). Ca2+ competed with one Mg2+ ion or two Na+ ions for binding to a common site. High K+ concentration greatly diminished the ability of Na+ and Mg2+ to compete with Ca2+ for this common site on the exchanger protein. As a result, high internal K+ induced a conformation of the exchange protein that kinetically favoured Ca2+ extrusion.  相似文献   

4.
Caffeine activates a mechanosensitive Ca(2+) channel in human red cells   总被引:1,自引:0,他引:1  
Cordero JF  Romero PJ 《Cell calcium》2002,31(5):189-200
Caffeine is known to activate influx of both mono- and divalent cations in various cell types, suggesting that this xanthine opens non-selective cation channels at the plasma membrane. This possibility was investigated in human erythrocytes, studying the caffeine action on net Ca(2+), Na(+) and K(+) movements in ATP-depleted cells. Whole populations and subpopulations of young and old erythrocytes were employed. Caffeine was tested in the presence of known mechanosensitive channel blockers (Gd(3+), neomycin and amiloride) and ruthenium red as a possible inhibitor. Caffeine enhanced net cation fluxes in a concentration-dependent way. In whole populations, the Ca(2+) entry elicited by 20 mM caffeine was fully suppressed by Gd(3+) (5 microM), amiloride (250 microM) and ruthenium red (100 microM) and partially blocked by neomycin (100 microM). The above blockers also inhibited caffeine-dependent Na(+) entry whilst showing antagonistic effects on the corresponding K(+) efflux. These compounds fully suppressed hypotonically-induced (-35 mOsm/kg) Ca(2+) influx at nearly the same concentrations completely blocking caffeine-stimulated Ca(2+) entry. The effect of inhibitors on Ca(2+) influx in young cells exceeded that in old cells at similar concentrations. The results clearly show that caffeine stimulates a stretch-activated Ca(2+) channel in human red cells and that aged cells are less susceptible to mechanosensitive channel blockers.  相似文献   

5.
Salt stress leads to massive accumulation of toxic levels of Na(+) and Cl(-) ions in plants. By using the recombinant fluorescent probe CLOMELEON, we demonstrate passive anion flux under salt stress. Chloride influx is restricted in the presence of divalent cations like Mg(2+) and Ca(2+), and completely blocked by La(3+). The amount but not the rate of the reported chloride uptake is independent from the kind of corresponding permeable cation (K(+) versus Na(+)), external pH and magnitude of osmotic stress. Cl(-) efflux however seems to involve stretch-activated transport. From the influence of Ca(2+) on reported changes of cytosolic anion concentrations, we speculate that transport mechanisms of Cl(-) and Na(+) might be thermodynamically coupled under saline conditions.  相似文献   

6.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

7.
Induction of a sodium ion influx by progesterone in human spermatozoa   总被引:5,自引:0,他引:5  
In human spermatozoa, progesterone (P(4)) induces a depolarization of the plasma membrane, a rapid calcium (Ca(2+)) influx, and a chloride efflux. The sodium ion (Na(+)) was partly responsible for the P(4)-induced depolarizing effect but was not required for calcium influx. We used fluorescent probes for spectrofluorometry to investigate whether P(4) induced a Na(+) influx and whether voltage-operated channels were involved in Na(+) and/or Ca(2+) entries. We found that 10 microM P(4) significantly increased intracellular Na(+) concentration from 17.8 +/- 2.0 mM to 27.2 +/- 1. 6 mM (P < 0.001). Prior incubation of spermatozoa with 10 microM flunarizine, a Na(+) and Ca(2+) voltage-dependent channel blocker, inhibited the sodium influx induced by 10 microM P(4) by 84.6 +/- 15.4%. The Ca(2+) influx induced by 10 microM P(4) was also significantly inhibited in a Na(+)-containing medium by 10 microM flunarizine or 10 microM pimozide (P < 0.01). In contrast, flunarizine had no inhibitory effect on the Ca(2+) influx induced by 10 microM P(4) in spermatozoa incubated in Na(+)-depleted medium. The P(4)-promoted acrosome reaction (AR) was significantly higher when spermatozoa were incubated in Na(+)-containing medium as compared to Na(+)-depleted medium. These data demonstrate that P(4) stimulates a Na(+) influx that could be involved in the AR completion. They also suggest that voltage-dependent Na(+) and Ca(2+) channels are implicated in P(4)-mediated signaling pathway in human spermatozoa.  相似文献   

8.
The focus of this study is to investigate the regulatory role of K(+) influx in Arabidopsis pollen germination and pollen tube growth. Using agar-containing media, in vitro methods for Arabidopsis pollen germination have been successfully established for the first time. The pollen germination percentage was nearly 75% and the average pollen tube length reached 135 microm after a 6 h incubation. A decrease in external K(+) concentration from 1 mM to 35 microM resulted in 30% inhibition of pollen germination and 40% inhibition of pollen tube growth. An increase in external K(+) concentration from 1 mM to 30 mM stimulated pollen tube growth but inhibited pollen germination. To study how K(+) influx is associated with pollen germination and tube growth, regulation of the inward K(+) channels in the pollen plasma membrane was investigated by conducting patch-clamp whole-cell recording with pollen protoplasts. K(+) currents were first identified in Arabidopsis pollen protoplasts. The inward K(+) currents were insensitive to changes in cytoplasmic Ca(2+) but were inhibited by a high concentration of external Ca(2+). A decrease of external Ca(2+) concentration from 10 mM (control) to 1 mM had no significant effect on the inward K(+) currents, while an increase of external Ca(2+) concentration from 10 mM to 50 mM inhibited the inward K(+) currents by 46%. Changes in external pH significantly affected the magnitude, conductance, voltage-independent maximal conductance, and activation kinetics of the inward K(+) currents. The physiological importance of potassium influx mediated by the inward K(+)-channels during Arabidopsis pollen germination and tube growth is discussed.  相似文献   

9.
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.  相似文献   

10.
Potentiation of TRPM7 inward currents by protons   总被引:1,自引:0,他引:1       下载免费PDF全文
TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca(2+) and Mg(2+) for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca(2+) and Mg(2+) concentrations were increased. Third, the apparent affinity for Ca(2+) and Mg(2+) was significantly diminished at elevated external H(+) concentrations. Fourth, the anomalous-mole fraction behavior of H(+) permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca(2+) and Mg(2+) bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H(+) concentrations, the affinity of TRPM7 for Ca(2+) and Mg(2+) is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg(2+)-inhibitable cation current (MIC) or Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.  相似文献   

11.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

12.
Na+ and K+ are the major extra- and intracellular cations, respectively. We have thus studied the role of these ions on human basophil histamine release by modifying their transmembrane gradients or by increasing membrane ion fluxes using ionophores. 1) When external Na+ (reduced to 4 mM) was replaced by the nonpermeating Na+ substitute N-methyl-D-glucamine, the release of histamine was enhanced in 2 mM Ca2+ (from 37.5 +/- 8.0% in 140 mM Na+ to 68.5 +/- 9.1% in low Na+) and became possible in the presence of low Ca2+ (at 1 microM Ca2+: from 0.6 +/- 0.7% in 140 mM Na+ to 36.2 +/- 8.0% in low Na+); moreover, in low Na+, the release of histamine became partly independent on Ca2+ influx. 2) Increasing the Na+ influx with the cation channel-forming gramicidin D inhibited the release of histamine by 33.2 +/- 13.6% (n = 6) in an external Na(+)-dependent manner. 3) Decreasing K+ efflux using K+ channel blockers (4-aminopyridine, quinine, sparteine) inhibited histamine release in a dose-response manner. 4) The K+ ionophore valinomycin, which increases K+ efflux, slightly enhanced IgE-mediated histamine release when used alone, whereas it potentiated the release of histamine from leukocytes previously treated with 4-aminopyridine by 57.0 +/- 18.6% (n = 7). 5) Decreasing K+ efflux by increasing external K+ inhibited IgE-mediated release in a similar manner as Na+ did. The inhibitory effects of Na+ and high K+ were not additive, thus suggesting that both cations inhibited the release by a common mechanism. In conclusion 1) our data evidence that histamine release from human basophils is inhibited by Na+ influx and potentiated by K+ efflux; 2) they suggest that K+ channels are present on the basophil membrane and that Na+ and K+ fluxes act on histamine release most probably via modulation of membrane potential.  相似文献   

13.
White PJ  Davenport RJ 《Plant physiology》2002,130(3):1386-1395
A voltage-independent cation (VIC) channel has been identified in the plasma membrane of wheat (Triticum aestivum) root cells (P.J. White [1999] Trends Plant Sci 4: 245-246). Several physiological functions have been proposed for this channel, including roles in cation nutrition, osmotic adjustment, and charge compensation. Here, we observe that Ca(2+) permeates this VIC channel when assayed in artificial, planar lipid bilayers, and, using an energy barrier model to describe cation fluxes, predict that it catalyzes Ca(2+) influx under physiological ionic conditions. Thus, this channel could participate in Ca(2+) signaling or cytosolic Ca(2+) homeostasis. The pharmacology of (45)Ca(2+) influx to excised wheat roots and inward cation currents through the VIC channel are similar: Both are insensitive to 20 microM verapamil or 1 mM tetraethylammonium, but inhibited by 0.5 mM Ba(2+) or 0.5 mM Gd(3+). The weak voltage dependency of the VIC channel (and its lack of modulation by physiological effectors) suggest that it will provide perpetual Ca(2+) influx to root cells. Thus, it may effect cytosolic Ca(2+) homeostasis by contributing to the basal Ca(2+) influx required to balance Ca(2+) efflux from the cytoplasm through ATP- and proton-coupled Ca(2+) transporters under steady-state conditions.  相似文献   

14.
In most mammalian cells, regulatory volume decrease (RVD) is mediated by swelling-activated Cl(-) and K(+) channels. Previous studies in the human neuroblastoma cell line CHP-100 have demonstrated that exposure to hypoosmotic solutions activates Cl(-) channels which are sensitive to Ca(2+). Whether a Ca(2+)-dependent K(+) conductance is activated after cell swelling was investigated in the present studies. Reducing the extracellular osmolarity from 290 to 190 mOsm/kg H(2)O rapidly activated 86Rb effluxes. Hypoosmotic stress also increased cytosolic Ca(2+) in fura-2 loaded cells. Pretreatment with 2.5 mM EGTA and nominally Ca(2+) free extracellular solution significantly decreased the hypoosmotically induced rise in cytosolic Ca(2+) and the swelling-activated 86Rb efflux. In cell-attached patch-clamp studies, decreasing the extracellular osmolarity activated a K(+) conductance that was blocked by Ba(2+). In addition, the swelling-activated K(+) channels were significantly inhibited in the presence of nominally free extracellular Ca(2+) and 2.5mM EGTA. These results suggest that in response to hypoosmotic stress, a Ca(2+)-dependent K(+) conductance is activated in the human neuroblastoma cell line CHP-100.  相似文献   

15.
The intracellular level of potassium (K(+)) in Escherichia coli is regulated through multiple K(+) transport systems. Recent data indicate that not all K(+) extrusion system(s) have been identified (15). Here we report that the E. coli Na(+) (Ca(2+))/H(+) antiporter ChaA functions as a K(+) extrusion system. Cells expressing ChaA mediated K(+) efflux against a K(+) concentration gradient. E. coli strains lacking the chaA gene were unable to extrude K(+) under conditions in which wild-type cells extruded K(+). The K(+)/H(+) antiporter activity of ChaA was detected by using inverted membrane vesicles produced using a French press. Physiological growth studies indicated that E. coli uses ChaA to discard excessive K(+), which is toxic for these cells. These results suggest that ChaA K(+)/H(+) antiporter activity enables E. coli to adapt to K(+) salinity stress and to maintain K(+) homeostasis.  相似文献   

16.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

17.
We examined whether localized increases in cytosolic cGMP have distinct regulatory effects on the concentration of cytosolic free Ca(2+) in ECV304 cells. Stimulation of the particulate guanylate cyclase by brain-type natriuretic peptide in fura-2-loaded cells caused a profound potentiation of the ATP-stimulated and thapsigargin-stimulated rise in cytosolic free Ca(2+). This effect is mediated by the inhibition of Ca(2+) extrusion via the plasma membrane Ca(2+)-ATPase pump. Furthermore, the addition of brain-type natriuretic peptide caused the partial inhibition of cation influx in ATP-stimulated cells. In contrast, elevation of cytosolic cGMP by activation of the soluble guanylate cyclase induced by the addition of sodium nitroprusside causes an increased reuptake of Ca(2+) into the intracellular stores without affecting cation influx or Ca(2+) efflux. Thus, localized pools of cGMP play distinct regulatory roles in the regulation of Ca(2+) homeostasis within individual cells. We define a new role for natriuretic peptides in the inhibition of Ca(2+) efflux that leads to the potentiation of agonist-evoked increases in cytosolic free Ca(2+).  相似文献   

18.
Although store-operated calcium release-activated Ca(2+) (CRAC) channels are highly Ca(2+)-selective under physiological ionic conditions, removal of extracellular divalent cations makes them freely permeable to monovalent cations. Several past studies have concluded that under these conditions CRAC channels conduct Na(+) and Cs(+) with a unitary conductance of approximately 40 pS, and that intracellular Mg(2+) modulates their activity and selectivity. These results have important implications for understanding ion permeation through CRAC channels and for screening potential CRAC channel genes. We find that the observed 40-pS channels are not CRAC channels, but are instead Mg(2+)-inhibited cation (MIC) channels that open as Mg(2+) is washed out of the cytosol. MIC channels differ from CRAC channels in several critical respects. Store depletion does not activate MIC channels, nor does store refilling deactivate them. Unlike CRAC channels, MIC channels are not blocked by SKF 96365, are not potentiated by low doses of 2-APB, and are less sensitive to block by high doses of the drug. By applying 8-10 mM intracellular Mg(2+) to inhibit MIC channels, we examined monovalent permeation through CRAC channels in isolation. A rapid switch from 20 mM Ca(2+) to divalent-free extracellular solution evokes Na(+) current through open CRAC channels (Na(+)-I(CRAC)) that is initially eightfold larger than the preceding Ca(2+) current and declines by approximately 80% over 20 s. Unlike MIC channels, CRAC channels are largely impermeable to Cs(+) (P(Cs)/P(Na) = 0.13 vs. 1.2 for MIC). Neither the decline in Na(+)-I(CRAC) nor its low Cs(+) permeability are affected by intracellular Mg(2+) (90 microM to 10 mM). Single openings of monovalent CRAC channels were not detectable in whole-cell recordings, but a unitary conductance of 0.2 pS was estimated from noise analysis. This new information about the selectivity, conductance, and regulation of CRAC channels forces a revision of the biophysical fingerprint of CRAC channels, and reveals intriguing similarities and differences in permeation mechanisms of voltage-gated and store-operated Ca(2+) channels.  相似文献   

19.
1. When human erythrocytes are stored at 3 degrees C for several days as a suspension in iso-osmotic sucrose or KCl, containing CaCl(2), the rates of cellular ATP degradation are similar. 2. During cold storage of erythrocytes in sucrose-CaCl(2) medium, Ca(2+) influx and univalent-cation efflux occur, the pH value of the suspending medium rises and the intracellular pH falls. These pH changes correlate reasonably well with alterations in the membrane potential calculated from Cl(-) distribution. 3. The presence of Ca(2+) in the medium does not increase the rate of univalent-cation efflux from the cells. 4. When the pH of the medium is raised by addition of buffers, the rates of both Ca(2+) influx and univalent-cation efflux increase. 5. Replacement of sucrose by KCl as the main osmotic component of the medium completely suppresses Ca(2+) influx and univalent-cation efflux, although the pH of the KCl medium is higher than that of the sucrose medium. 6. When sucrose is replaced by choline chloride, Ca(2+) influx and univalent-cation efflux still occur, and the pH of the medium is similar to that found in iso-osmotic KCl. 7. When valinomycin, Pb(2+) or Cd(2+) are added to the iso-osmotic sucrose medium, the rate of efflux of univalent cations increases as also does the influx of Ca(2+). 8. From these and other observations, it was concluded that it is univalent-cation efflux rather than ATP depletion or elevated extracellular pH which is the prerequisite for Ca(2+) influx during cold storage.  相似文献   

20.
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号