首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolactin (PRL) cells of the goat adenohypophysis have been identified by the IgG-gold procedure with anti-sheep PRL serum. The secretion of these cells show differences in size and labelling in the three reproductive stages under study. Cells containing PRL can be grouped into low secretory activity cells (PRL-I) and high secretory activity cells (PRL-II) regarding their ultrastructure and functional significance. PRL-I were the most frequent cells in animals at the anoestrus stage, presenting numerous secretory granules and scarce development of the rough endoplasmic reticulum (RER) and Golgi complex (GC). At anoestrus and pregnancy stages there are frequent granule fusions, and the hormonal content partially disappears, perhaps by digestion. PRL-II cells were the most numerous at the lactating stage, presenting a moderate number of secretory granules and well-developed GC and RER. Some PRL-II cells of lactating animals exhibiting scarce granules and numerous exocytosis suggesting a high secretory activity. In both anoestrus and pregnancy stages most granules range in diameter from 450 to 750 nm, in contrast to the lactating stage in which most granules range in diameter from 150 to 450 nm.  相似文献   

2.
Summary The immunocytochemical peroxidase-antiperoxidase technique was used to identify prolactin- and growth hormone-producing cells in the porcine pituitary at the ultrastructural level. The growth hormone-producing cells contain round secretory granules (300 nm to 500 nm in diameter). The prolactin-producing cells can be identified by their distinct round and ovoid secretory granules which vary in size. Most of these cells contain large granules (450 nm to 750 nm in diameter), but some prolactin-producing cells display smaller secretory granules (250 nm to 500 nm). The two hormones were localized exclusively in the secretory granules. Staining for prolactin was observed in round and ovoid granules, as well as in small and polymorphic granules within the Golgi complex. This study confirmed (i) that the two hormones are located in different cells, and (ii) that under normal physiological conditions no one cell can synthesize and store both hormones simultaneously.  相似文献   

3.
In a human medullary carcinoma of thyroid gland containing calcitonin in light microscopic demonstration by the avidin biotin complex (ABC) method characteristic secretory granules were found electron microscopically in the cytoplasm of the tumour cells. They consisted in so-called type I granules (270 +/- 25 nm) and type II granules (135 +/- 17 nm). By the immuno gold staining (IGS) method the content of many secretory granules measuring 85-270 nm (152 +/- 18 nm) in diameter could be identified as calcitonin. These granules seemed to be predominantly of type II because of their nearly corresponding size and feature. The type I granules were less frequent in number and they showed no or little immunoreactivity. The results indicate that the IGS-method is practicable to demonstrate the ultrastructural localization of calcitonin and to identify clearly the nature of intracytoplasmic granules in electron microscopy.  相似文献   

4.
Y Iwama  T Nakano  K Hasegawa  H Muto 《Acta anatomica》1990,139(4):293-299
By means of immunohistochemistry, lactotropes, somatotropes, corticotropes and thyrotropes in the pituitary of the male musk shrew, Suncus murinus L., were identified at the electron-microscopic level. Lactotropes were classified into three types: type I containing large (200-450 nm in diameter) round secretory granules, type II with medium-sized (150-250 nm in diameter) ones and type III with small (50-150 nm in diameter) ones. Somatotropes were also classified into type I somatotropes that contain large (450 nm in diameter) spherical secretory granules and type II somatotropes containing comparatively small (300 nm in diameter) round granules. Both type I and II somatotropes were small and sometimes contained rod-shaped granules. Corticotropes were round or oval cells with round secretory granules in various densities and sizes (150-500 nm in diameter) scattered all over the cytoplasm. Thyrotropes were angular or polyhedral cells containing electron-transparent round secretory granules (200-300 nm in diameter) and large irregularly shaped granules with a maximum diameter of about 1,500 nm. Each type of the cells may be distinguished by its respective ultrastructural characteristics alone without the aid of immunohistochemistry.  相似文献   

5.
A preembedding immunocytochemical technique enabled us to demonstrate normal human parafollicular (C) cells at the electron-microscopic level. The normal human C cells had numerous large secretory granules with a diameter of approximately 200 nm, well-developed rough endoplasmic reticulum and Golgi complex in their cytoplasm. Calcitonin immunoreactivity and calcitonin-gene-related peptide (CGRP) immunoreactivity were present only in the C cells whose secretory granules were heavily labeled. Both calcitonin and CGRP immunoreaction deposits were seen in the cytosol but not in the cisterna of endoplasmic reticulum, Golgi apparatus or mitochondrial matrix. The two peptides produced from a single calcitonin gene were stored in the secretory granules of the C cells.  相似文献   

6.
The storage sites of the pituitary glycoprotein hormones were identified with the use of electron microscopic immunocytochemical techniques and antisera to the beta (beta) chains of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH). The TSH cells in normal rats is ovoid or angular and contains small granules 60-160 nm in diameter. In TSH cells hypertrophied 45 days after thyroidectomy, staining is in globular patches in granules or diffusely distributed in the expanded profiles of dilated rough endoplasmic reticulum. The gonadotrophs (FSH and LH cells) exhibited three different morphologies. Type I cells are ovoid with a population of large granules and a population of small granules. Staining for FSHbeta or LHbeta was intense and specific only in the large granules (diameter of 400 nm or greater). Type II cells are angular or stellate and contain numerous secretory granules averaging 200-220 nm in diameter. They predominate during stages in the estrous cycle when FSH or LH secretion is high. Type III cells look like adrenocorticotropin (ACTH) cells in that they are stellate with peripherally arranged granules. They generally stain only with anti-FSHbeta and their staining can not be abolished by the addition of 100 ng ACTH. In preliminary quantitative studies of cycling females, we found that on serial sections FSH cells and LH cells show similar shifts to a more angular population of cells during stages of active secretion. However, the shifts are not in phase with one another. Furthermore, there are at least 1.5 times more FSH cells than LH cells at all stages of the cycle. Our collection of serial cells shows that some cells (usually type I or II) stain for both gonadotropic hormones, whereas others (usually type II or III) contain only one.  相似文献   

7.
Y Iwama  F Sasaki 《Acta anatomica》1989,134(3):232-236
Somatotropes, lactotropes and corticotropes of adult male mice were identified with immunohistochemistry in the adenohypophysis fixed by OsO4 alone. Somatotropes were classified into type I somatotropes that contain large (350 nm in diameter) round secretory granules and type II somatotropes that contain small (100-200 nm in diameter) round secretory granules. Most somatotropes were type I somatotropes. Lactotropes were also classified into type I lactotropes that contain irregularly shaped secretory granules and type II lactotropes containing small (100-200 nm in diameter) round secretory granules. Corticotropes are irregular stellate or slender cells with little cytoplasm. They contain round solid secretory granules in various densities along the cell periphery. Most of these are low-density granules (200-300 nm in diameter) and a few are high-density granules (200-250 nm in diameter). These data were compared with the classical data of mouse adenohypophysial cells that were fixed in OsO4 alone and identified only by conventional electron microscopy.  相似文献   

8.
Summary The pancreatic endocrine tissue of Fugu rubripes rubripes consists of numerous round principal islets (Brockmann bodies) of various sizes scattered around the gall-bladder. The endocrine cells are divided into A-, B-, D-, and Ff-cells. Each cell type was identified by comparing thick and thin sections in both light and electron microscopy. Aldehyde-fuchsin positive B-cells contain numerous round secretory granules (average diameter 300 nm) each of which has a round compact core of moderate density; a narrow space exists between this core and the limiting membrane. Grimelius' silver positive A cells contain round secretory granules (average diameter 360 nm) with a hexagonal or tetragonal crystalline core (average diameter 170 nm) of high density; the silver grains preferentially appear in the space between the limiting membrane and the core. The crystalline core of each -granule often contains an appendix-like structure of variable shape. D cells blackened by the silver impregnation method of Hellman and Hellerström (1960) have round secretory granules (average diameter 320 nm) filled with a flocculent material of low density. The fourth cell type (Ff-cell) has a clear cytoplasm after differential staining for light microscopy. By electron microscopy, this cell has elongated fusiform secretory granules (520 nm average length × 230 nm average width) filled with numerous filaments arranged in parallel with the longitudinal axis. Figures suggesting granule formation in the sacs of the Golgi apparatus were obtained in all of islet cell types. Equivalents of emiocytotic release of secretory granules were encountered in the A and Ff cells.  相似文献   

9.
Summary In a human medullary carcinoma of thyroid gland containing calcitonin in light microscopic demonstration by the avidin biotin complex (ABC) method characteristic secretory granules were found electron microscopically in the cytoplasm of the tumour cells. They consisted in so-called type I granules (270±25 nm) and type II granules (135±17 nm). By the immuno gold staining (IGS) method the content of many secretory granules measuring 85–270 nm (152±18 nm) in diameter could be identified as calcitonin. These granules seemed to be predominantly of type II because of their nearly corresponding size and feature. The type I grnaules were less frequent in number and they showed no or little immunoreactivity. The results indicate that the IGS-method is practicable to demonstrate the ultrastructural localization of calcitonin and to identify clearly the nature of intracytoplasmic granules in electron microscopy.  相似文献   

10.
An immunohistochemical study of the anterior pituitary gland of the female Afghan pika was carried out to distinguish the ultrastructural features of GH, PRL, ACTH, TSH and LH cells. The histochemically identified GH cells resembled ultrastructurally oval or round GH cells of the rat laden with large, dense secretory granules. PRL cells were divided into three subtypes based on differences in the diameter of their spherical secretory granules. They lacked polymorphic or irregularly shaped secretory granules. ACTH cells resembled ultrastructurally, in some respects, Siperstein's "corticotrophs" of the rat with peripheral arrangement of secretory granules. However, they were not always stellate, but elongate or angular in shape. The dense secretory granules were concentrated in the peripheral area of cytoplasm. TSH cells were non-stellate, but usually oval in shape, containing the smallest spherical secretory granules (100-200 nm in diameter). Almost all LH cells reacted also with FSH antiserum. They were irregular in shape, sometimes in contact with or surrounded the GH cells. They contained an abundance of medium-sized secretory granules (140-260 nm in diameter) which were larger than those in the LH cells of the female rat throughout the estrous cycle. Large secretory granules in the LH cells of the female pika seemed to be related to the endocrine state of persistent estrus.  相似文献   

11.
Summary The fine structure of each type of anterior pituitary cell in the male goat was studied through the application of a superimposition technique in which adjacent thick sections were used to identify individual cells beforehand by light-microscopic immunohistochemistry. A cone of the pars intermedia protrudes into the pars anterior, being surrounded by the narrow pituitary cleft; the immunohistochemical appearances of the cells forming the cone resemble those of the pars anterior. Several follicles appear in the pars anterior. Ultrastructurally GH cells resemble prolactin cells. The secretory granules of both types are spherical; the diameter of the former is about 340 nm, whereas that of the latter is about 440 nm. ACTH cells are polygonal in shape with secretory granules, about 180 nm in diameter, scattered throughout the cytoplasm. TSH cells, which are spherical in shape, contain the smallest secretory granules, 150 nm in diameter. The highly electron-dense LH cells contain numerous secretory granules about 210 nm in diameter. Their nuclei are irregular with incisures. Thus, the anterior pituitary cells of the goat are ultrastructurally characteristic and species-specific.  相似文献   

12.
The differentiation of the folliculo-stellate (F-S) cells was electronmicroscopically investigated in the normal male adult rats from the Wistar, Wistar-Imamichi, Holzmann, Spraque-Dowley and Donryu strains. The F-S cells may be divided into the five types according to the granulation. Each type is, however, provided with the common characteristic features, i.e., the stellate shape due to projecting the cytoplasmic processes and a tendency to embrace an acidophil. The first type is an agranular independent or anastomosing immature cell. It is different in shape and arrangement from the follicular cell, but similar in agranularity and immaturity to it. The second is a slightly differentiated cell, in which scanty small secretory granules 50--100 nm in diameter begin to appear near the plasma membrane. The third is a moderately differentiated cell providing the regularly row arrangement of secretory granules 100--200 nm in diameter along the plasma membrane, corresponding, in fine structure, with a corticotroph. The fourth is a fully differentiated cell with heavy granulation, whose secretory granules 150--250 nm in diameter are accumulated in the whole cytoplasm, suggesting the storing type. It is difficult to determine whether the fourth type coincides with a hypergranulated corticotroph or a stellate thyrotroph. The fifth is a kind of fully differenetiated cell which may refer to the releasing phase of the fourth type, being characterized by the dispersion or loss of minute secretory granules of low density as large as 50 nm in diameter, associated with the cored vesicles. The population densith of the above five types increased in the sequence, 5th leads to 4th leads to 1st leads to 3rd type in the gland. Namely, the 3rd (corticotroph) type and 1st (agranular) type are predominantly distributed, and the 5th (releasing) type and 4th (hypergranulated) type are rarely.  相似文献   

13.
Summary The fine structural characteristics of normal rat corticotrophs stained with anti-porcine ACTH1–39 serum were studied. At the ultrastructure level immunoreactive corticotrophs appear to comprise four distinct cell types: (1) large stellate cells (Siperstein cells) containing granules (170–250 nm in diameter) arranged in a peripheral row and usually embracing an acidophil; (2) elongate spindle-shaped cells (Moriarty cells) in which the secretory granules (170–250 nm in diameter) are distributed in a row or in small clusters in the peripheral cytoplasm; (3) oval or polygonal cells filled only with small secretory granules (130–170 nm in diameter), resembling the acidophil of small granules type (Yoshimura et al. 1974); and (4) polygonal or stellate cells filled with secretory granules of varying diameters (180–300 nm in diameter) and occasionally embracing an acidophil. The first type is the most common, but the others are infrequent. It is concluded that the criteria of Siperstein and Miller (1970) do not necessarily include all categories of rat corticotrophs.  相似文献   

14.
The structural and ultrastructural modifications of the gonadotropic cells of goats were studied with an immunohistochemical method (peroxidase-antiperoxidase), in anoestrus, gestation and milk production. The cell type which predominates in anoestrus corresponds in its morphological characteristics to the classic FSH cells, and has two populations of homogeneous and electrodense secretory granules (141-244 nm and 244-400 nm in diameter), rough endoplasmic reticulum of flat cisternae and many large-sized lysosomes. During gestation secretory granules show a characteristic reduction in size and are less abundant; lysosomes are also more scarce and the endoplasmic reticulum shows a high development; dilated and intercommunicated cisternae show a slight electrodense content, characteristic of typical LH cells. During milk production the cells show an increase in the number of secretory granules which are still small, and an increase in the number of lysosomes which appear as in anoestrus.  相似文献   

15.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

16.
Summary As previously reported, in anterior pituitary cells of the rat, secretory granules are linked with adjacent granules, cytoorganelles, microtubules, and plasma membrane by thin filaments, 4–10 nm in diameter. The quick-freeze, deep-etching method revealed that some of the filaments linking adjacent secretory granules show 5 nm-spaced striations on their surface which are known to be characteristic of actin. Immunocytochemistry showed that actin is localized in the cytoplasm beneath the plasma membrane, and around or between secretory granules. The heavy meromyosin decoration method demonstrated that actin filaments are mainly located in the cytoplasm beneath the plasma membrane, while some actin filaments are connected with the limiting membrane of the secretory granules. The actin filaments associated with the secretory granules are considered to be involved in the intracellular transport of the granules, while those localized in the peripheral cytoplasmic matrix might control the approach of the secretory granules to the plasma membrane and their release.This study was supported in part by grants from the Research Fund of the Ministry of Education, Science, and Culture, Japan  相似文献   

17.
Four endocrine cell types were identified ultrastructurally in the pancreas of the grass lizard, Mabuya quinquetaeniata. These cells were similar in shape, location and frequency to the previously described B-, A-, D- and PP-cells. The secretory granules of the B-cells were round or oval in profile, with an internal core of variable shape. The mean diameter of the B-cell granules was 780 nm (range 350–1000 nm). The A-cell granules were round, oval or irregular in shape and highly electron dense, with a narrow electron lucent space between the core and the limiting membrane. The mean diameter of these granules was 450 nm (range 200–750 nm). The D-cell granules were round, oval or irregular and of moderate electron density, with an average diameter of 340 nm (range 200–500 nm). The limiting membrane was closely apposed to the core or separated from it by a narrow lucent space. PP-cell granules were round with high electron density and with a narrow space between the core and the limiting membrane, and their average diameter was 150 nm (range 50–350 nm); these secretory granules accumulated at the cytoplasmic process. Tracing of the cytoplasmic processes of PP-cells in serially cut ultrathin sections revealed that most of these processes ended in the vicinity of blood capillaries, indicating that the PP-cells were endocrine rather than paracrine.  相似文献   

18.
19.
Summary The ultimobranchial gland (UBG) of birds is particularly rich in calcitonin, the hypocalcaemic hypophosphataemic hormone, that is secreted by the C-cells of the mammalian thyroid. The principal cells of the UBG have a striking resemblance with the mammalian C-cells, i.e., they possess small intracytoplasmic dense-core secretory granules, 150–300 nm in diameter. The gland also contains a second, morphologically distinct, endocrine cell type with larger granules, 500–800 nm in diameter. A sensitive immunocytochemical reaction was developed with the use of antibodies against salmon calcitonin. By means of this technique the presence of calcitonin-immunoreactive molecules was demonstrated in both secretory cell types of the UB gland of the chicken. This gland can thus be considered as a homogeneous calcitonin-producing tissue. Whether the secretory products are identical is discussed and differences in the secretory pathways are suggested.  相似文献   

20.
The detection of exocytotic fusion in patch-clamped secretory cells depends on measuring an increase in the cell membrane capacitance as new membrane is added to the plasma membrane. However, in the majority of secretory cells, secretory vesicles are too small (< 200 nm in diameter) to cause a detectable signal. We have found that incubations of normal mouse mast cells with the hydrophobic anion dipicrylamine (DPA), increases cell membrane capacitance by about three times. The large capacitive current induced by DPA was voltage-dependent, having a maximum value at -10 mV. The DPA-induced charge movement could be described by a single barrier model in which the DPA molecules move between two stable states in the bulk lipid matrix of the membrane. More importantly, the DPA treatment produced a sevenfold increase in the size of the capacitance steps observed upon the exocytotic fusion of single secretory granules. A similar amplification of DPA on the secretory vesicle capacitance was observed in a cell with larger (< or = 5 microns in diameter) or with smaller secretory granules (< 250 nm in diameter). Additionally, the increased granule membrane capacitance enlarged the transient capacitive discharge measured upon formation of a fusion pore in normal mast cell granules. Our results indicate that hydrophobic ions provide an important tool for high resolution studies of membrane capacitance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号