首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the lights of the concept of cooperation wholes, I discuss why the differentiation of sperm and ova can occur with a mathematical model. Most of Parker's explanations for anisogamy are not completely proper, because it is proved that sperm competition is neither sufficient nor necessary for anisogamy and cooperation to deal with fertilization risks is the real key to understand the evolution of anisogamy. According to the computer simulation results, the transport of gametes between different individuals, risks of the transport, the consequent inequality of sperm and eggs and competition among different individuals were the main causes of gamete differentiation. But these factors have different roles and effects. The transport risk is the main reason for individuals of different mating types to cooperate and differentiate into sperm and egg producers. The transported gametes have an advantage to evolve into sperm to seek for a larger gamete number over the fixed gametes, because they suffer more risks as they can encounter the same fixed gamete and less sibling competition as they can be dispersed better. Gamete competition among different individuals just causes the transported gametes to become as small as possible if they have already become smaller beyond a critical state. In the final discussion, I further put the evolution of anisogamy into a broader background of levels of selection and of the evolution of cooperation, the most important existential mode of matters that makes life as life.  相似文献   

2.
The population genetics of anisogamy   总被引:2,自引:0,他引:2  
This paper analyses the population genetics of anisogamy controlled by a single locus, in both the haploid and diploid cases. The conclusions of Parker et al. (1972), based on computer calculations, are confirmed analytically. The effects of the existence of two mating types on the evolution of anisogamy are examined. Close linkage between a mating type locus and the gamete size locus may produce non-random associations of alleles, leading to disassortative fusion with respect to gamete size. With loose linkage, there is random association of alleles, but selection favours closer linkage.  相似文献   

3.
This paper extends the population genetic model of (the evolution of) anisogamy of Charlesworth (1978), which is based on the model of Parker, Baker & Smith (1972). The effect of parthenogenesis on the evolution of anisogamy is examined; this effect turns out to be only quantitative. Furthermore, the problem of the occurrence of only two different gamete sizes is considered. It is shown that a stable polymorphism with three different gamete sizes cannot exist. This result is robust to changes in the mating structure (random or disassortative gamete fusion) and to changes in the mode of reproduction (only sexual or partially parthenogenetic).  相似文献   

4.
The evolution of anisogamy   总被引:3,自引:0,他引:3  
Anisogamy is the occurrence within a population of two gamete types of different size, a very common condition both in plants and in animals. This paper shows conditions that anisogamy without disassortative fusion (pseudoanisogamety) should be favoured by individual natural selection; the results obtained analytically below are in basic agreement with those obtained through the use of numerical techniques by Parker, Baker &; Smith (1972). Major results are as follows. First, a necessary condition that gametes of intermediate size should be least fit is that zygote survival should increase more steeply than linearly with zygote size, over at least part of the range of zygote size. Second, stable genetic equilibria involving two alleles may be established, whether these alleles determine gamete size in the haploid or in the diploid phase. Third, if the difference in size between the two gamete types persisting at equilibrium is very great, the two types of gamete-producers will be nearly equally frequent at equilibrium. These results are interpreted to mean that frequency-dependent natural selection may maintain a genetic equilibrium involving two gamete types, provided that the frequency-independent criterion that zygote survival should increase more steeply than linearly with zygote size is satisfied. The importance of zygote size in protists and in multicellular organisms is briefly discussed, but satisfactory quantitative data are lacking. The anisogamy generated in this way is always associated with sexual bipolarity, and an explanation is offered. These arguments lead to the prediction that increasing gamete dimorphism will be associated with increasing vegetative complexity, and a number of phyletic series among the algae, fungi and protozoa were reviewed with this in mind. The Volvocales provide an excellent example of the expected correlation, but other series are less satisfactory. On the whole, the comparative evidence is held to support the predictions of Parker et al., but exceptions to the rule are so numerous that a more detailed examination of the aberrant cases is very desirable.  相似文献   

5.
Anisogamy refers to gametes that differ in size, and characterizes the difference between males and females. The evolution of aniosgamy is widely interpreted as involving conflict between gamete producers with small sperm parasitizing on the investment made by the eggs. Using a population genetic model for evolution at a locus that codes jointly for sperm and egg sizes of a hermaphrodite, we show that the origin of anisogamy in an externally spawning population need not involve conflict between gamete producers. Gamete size dimorphism may be an adaptation that increases gamete encounter rates when large zygotes are selected, and we show this in a mechanistically general individual selection model. We use the Vance survival function without specific allometric assumptions to model the zygote fitness dependence on its size, and hence obtain ecological and life-history correlates of isogamy and anisogamy, which we successfully compare with data from Volvocales.  相似文献   

6.
Some species mate nonrandomly with respect to alleles underlying immunity. One hypothesis proposes that this is advantageous because nonrandom mating can lead to offspring with superior parasite resistance. We investigate this hypothesis, generalizing previous models in four ways: First, rather than only examining invasibility of modifiers of nonrandom mating, we identify evolutionarily stable strategies. Second, we study coevolution of both haploid and diploid hosts and parasites. Third, we allow for maternal parasite transmission. Fourth, we allow for many alleles at the interaction locus. We find that evolutionarily stable rates of assortative or disassortative mating are usually near zero or one. However, for one case, in which assumptions most closely match the major histocompatibility complex (MHC) system, intermediate rates of disassortative mating can evolve. Across all cases, with haploid hosts, evolution proceeds toward complete disassortative mating, whereas with diploid hosts either assortative or disassortative mating can evolve. Evolution of nonrandom mating is much less affected by the ploidy of parasites. For the MHC case, maternal transmission of parasites, because it creates an advantage to producing offspring that differ from their parents, leads to higher evolutionarily stable rates of disassortative mating. Lastly, with more alleles at the interaction locus, disassortative mating evolves to higher levels.  相似文献   

7.
Why are sperm small and eggs large? The dominant explanation for the evolution of gamete size dimorphism envisages two opposing selection pressures acting on gamete size: small gametes are favoured because many can be produced, whereas large gametes contribute to a large zygote with consequently increased survival chances. This model predicts disruptive selection on gamete size (i.e. selection for anisogamy) if increases in zygote size confer disproportional increases in fitness (at least over part of its size range). It therefore predicts that increases in adult size should be accompanied by stronger selection for anisogamy. Using data from the green algal order Volvocales, we provide the first phylogenetically controlled test of the model''s predictions using a published phylogeny and a new phylogeny derived by a different method. The predictions that larger organisms should (i) have a greater degree of gamete dimorphism and (ii) have larger eggs are broadly upheld. However, the results are highly sensitive to the phylogeny and the mode of analysis used.  相似文献   

8.
In the double fertilization of angiosperms, one sperm cell fertilizes an egg cell to produce a zygote, whereas the other sperm cell fertilizes a central cell to give rise to an endosperm. There is little information on gamete membrane dynamics during double fertilization even though the cell surface structure is critical for male and female gamete interactions. In a recent study, we analyzed gamete membrane behavior during double fertilization by live-cell imaging with Arabidopsis gamete membrane marker lines. We observed that the sperm membrane signals occasionally remained at the boundary of the female gametes after gamete fusion. In addition, sperm membrane signals entering the fertilized female gametes were detected. These findings suggested that plasma membrane fusion between male and female gametes occurred with the sperm internal membrane components entering the female gametes, and this was followed by plasmogamy.  相似文献   

9.
A previous general model describing physical constraints on gamete encounter rates was modified to incorporate assumptions that increased size causes decreased swimming speed and increased fertile period (or other proportional enhancement to gamete fertility). The analysis indicates that with moderately strong size dependence of fertile period and a range of speed dependencies, selection for high encounter rates pressures mating systems that develop any heritable difference in size between the gametes of different mating types to exaggerate the difference and evolve from isogamy to anisogamy. The smaller gamete has an optimal size, but the larger faces continuing selection for increased size. This continues to a size that is estimated to be sufficient to make pheromone production of sperm attractants practical. This mechanism then bridges the missing link between isogametes and oogamy in a previous analysis of the effectiveness of pheromones in explaining the success of male-female mating systems. The evolution and success of anisogamy and oogamy can be explained solely on the basis of physical effects on the encounter process.  相似文献   

10.
Both gamete competition and gamete limitation can generate anisogamy from ancestral isogamy, and both sperm competition (SC) and sperm limitation (SL) can increase sperm numbers. Here, we compare the marginal benefits due to these two components at any given population level of sperm production using the risk and intensity models in sperm economics. We show quite generally for the intensity model (where N males compete for each set of eggs) that however severe the degree of SL, if there is at least one competitor for fertilization (N − 1 ≥ 1), the marginal gains through SC exceed those for SL, provided that the relationship between the probability of fertilization (F) and increasing sperm numbers (x) is a concave function. In the risk model, as fertility F increases from 0 to 1.0, the threshold SC risk (the probability q that two males compete for fertilization) for SC to be the dominant force drops from 1.0 to 0. The gamete competition and gamete limitation theories for the evolution of anisogamy rely on very similar considerations: our results imply that gamete limitation could dominate only if ancestral reproduction took place in highly isolated, small spawning groups.  相似文献   

11.
Classic theory on the evolution of anisogamy focuses on the trade-off between gamete productivity and provisioning and mechanisms associated with post-zygotic survival. In this article, the role of mortality acting on both zygotes and gametes is explored as a factor influencing the evolution of different sized gametes. In particular, variable mortality through differential survival or metabolic damage is shown to affect the persistence of isogamy, the evolution of more than two sexes and the evolution of anisogamy. Evolutionary stable isogamous states are shown to be locally unstable and disruptive selection can induce the evolution of anisogamy. Analysis of both the isogamous and anisogamous ESS points reveals that the persistence of either of these conditions is not always assured. The implications of variable survival on the evolution of anisogamy are discussed.  相似文献   

12.
The evolution of anisogamy in marine algae was studied through numerical simulations of gamete mating behaviour in three dimensions, using observed traits of marine green algae as input parameters. The importance of phototaxis became apparent from the numerical experiments: all gametes with phototactic systems are favoured over those without, but this advantage is reduced with increasing tank depth or shorter search times. Phototactic gametes were advantaged over non-phototactic gametes if the water was shallower than about 30–40 mm when the time available for gamete encounter was 1000 time steps (5.55 min). If gametes of both sexes are positively phototactic, slightly anisogamous species are at a disadvantage to isogamous species, which invalidates the sperm-limitation theory as a driver for the evolution of slight anisogamy. Conflicting selection forces of search efficiency and zygote fitness may be needed.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 321–327.  相似文献   

13.
It has previously been suggested that small sperm size may be an adaptation to achieve uniparental inheritance of organelles, and hence to prevent the spread of selfish cytoplasmic elements. Such an explanation for anisogamy implies a mechanism whereby the male gamete eliminates its own cytoplasm prior to fusion with the egg. A model has been presented demonstrating the invasion and persistence of a modifier that acts gametically to kill its own organelles. Here we show, however, that this model is far from robust; indeed, if any cost is associated with the modifier it cannot persist. We also show that despite an empirically demonstrated association between anisogamy and multicellularity, this result also applies if the analysis is applied in the multicellular case. This class of model contrasts with the majority of analyses in which the modifier kills off the incoming gamete’s organelles. We show that these models are highly robust, even if uniparental inheritance is imperfect.  相似文献   

14.
One major player known to be essential for successful gamete interactions during double fertilization in Arabidopsis thaliana is the recently identified family of egg cell-secreted EC1 proteins. Both gamete fusion events are affected in EC1-deficient female gametophytes. Here, we show that the number of ovules with unfused sperm cells is considerably higher than the number of undeveloped seeds in the same ec1-RNAi knockdown lines. We found that some sperm cells are able to fuse with the female gametes even 2 to 3 days after pollination, as reflected by delayed embryo and endosperm development, and by polytubey. We propose that the egg cell secretes EC1 proteins upon sperm arrival to promote rapid sperm activation, thereby accelerating gamete fusion and preventing polytubey.  相似文献   

15.
In marine green algae, isogamous or slightly anisogamous species are taxonomically widespread. They produce positively phototactic gametes in both sexes. We developed a new numerical simulator of gamete behavior using C++ and pseudo-parallelization methods to elucidate potential advantages of phototaxis. Input parameters were set based on experimental data. Each gamete swimming in a virtual rectangular test tank was tracked and the distances between the centers of nearby male and female were measured at each step to detect collisions. Our results shed light on the roles of gamete behavior and the mechanisms of the evolution of anisogamy and more derived forms of sexual dimorphism. We demonstrated that not only gametes with positive phototaxis were favored over those without, particularly in shallow water. This was because they could search for potential mates on the 2-D water surface rather than randomly in three dimensions. Also, phototactic behavior clarified the difference between isogamy and slight anisogamy. Isogamous species produced more zygotes than slightly anisogamous ones only under the phototactic conditions. Our results suggested that sperm limitation might be easily resolved particularly in the slightly anisogamous species. Some more markedly anisogamous species produce the smaller male gametes without any phototactic devices and the larger positively phototactic female gametes. In such species, female gametes attract their partners using a sexual pheromone. This pheromonal attraction system might have played a key role in the evolution of anisogamy, because it could enable markedly anisogamous species achieve 2-D search efficiencies on the water surface. The mating systems appear to be tightly tuned o the environmental conditions of their habitats.  相似文献   

16.
Angiosperms have a unique sexual reproduction system called “double fertilization.” One sperm cell fertilizes the egg and another sperm cell fertilizes the central cell. To date, plant gamete membrane dynamics during fertilization has been poorly understood. To analyze this unrevealed gamete subcellular behavior, live cell imaging analyses of Arabidopsis double fertilization were performed. We produced female gamete membrane marker lines in which fluorescent proteins conjugated with PIP2a finely visualized egg cell and central cell surfaces. Using those lines together with a sperm cell membrane marker line expressing GCS1-GFP, the double fertilization process was observed. As a result, after gamete fusion, putative sperm plasma membrane GFP signals were occasionally detected on the egg cell surface adjacent to the central cell. In addition, time-lapse imaging revealed that GCS1-GFP signals entered both the egg cell and the central cell in parallel with the sperm cell movement toward the female gametes during double fertilization. These findings suggested that the gamete fusion process based on membrane dynamics was composed of (1) plasma membrane fusion on male and female gamete surfaces, (2) entry of sperm internal membrane components into the female gametes, and (3) plasmogamy.  相似文献   

17.
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.  相似文献   

18.
Sperm chemoattraction, where sperm locate unfertilized eggs by following a concentration gradient of egg-derived chemoattractants, has been widely documented across numerous taxa. While marine invertebrates are favoured models for understanding the underlying mechanisms of sperm chemoattraction, the evolutionary forces underpinning the process remain enigmatic. Here, we show that in mussels (Mytilus galloprovincialis), chemically moderated gamete preferences promote assortative fertilizations between genetically compatible gametes. When offered the choice of egg clutches from two females, sperm exhibited consistent but differential ‘preferences’ for chemical cues secreted from conspecific eggs. Critically, our data reveal that the preferences shown by sperm during the egg-choice trials are highly predictive of early embryonic viability when eggs and sperm from the same individuals are mixed during standard (no-choice) fertilization assays. Moreover, we demonstrate that by experimentally separating chemoattractants from eggs, sperm swimming behaviour is differentially regulated by egg-derived chemoattractants, and that these changes in sperm behaviour are highly consistent with observed patterns of gamete preferences, fertilization and larval survival. Together, this integrated series of experiments reveals that the behaviour of sperm is fine-tuned to respond differentially to the chemical signals emitted from different conspecific eggs, and that these choices have measurable fitness benefits.  相似文献   

19.
A two-locus haploid model of sexual selection is investigated to explore evolution of disassortative and assortative mating preferences based on imprinting. In this model, individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a criterion of mate choice. It is assumed that the presence or absence of the female preference is determined by a genetic locus. In order to incorporate such mechanisms as inbreeding depression and heterozygous advantage into our haploid framework, we assume that same-type matings are less fertile than different-type mating. The model suggests that: if all the females have a disassortative mating preference a viability-reducing trait may be maintained even without the fertility cost of same-type matings; a disassortative mating preference can be established even if it is initially rare, when there is a fertility cost of same-type matings. Further, an assortative mating preference is less likely to evolve than a disassortative mating preference. The model may be applicable to the evolution of MHC-disassortative mating preferences documented in house mice and humans.  相似文献   

20.
We reexamine the influential parental investment hypothesis proposed by Trivers for the causal relationship between anisogamy and widespread female-biased parental care. We build self-consistent versions of Maynard Smith's simple evolutionary game between males and females over parental care, and incorporate consequences of anisogamy for gamete production and its trade-off with parental care, and for patterns of mate limitation. As male mating opportunities are limited by females, frequency-dependent selection acts on male strategies. Assuming synchrony of matings in the population, our analytical models find either symmetric sex roles or male-biased care as an evolutionarily stable strategy (ESS), in contrast to Trivers' hypothesis. We simulate evolution in asynchronously mating populations and find that diverse parental roles, including female care, can be ESS depending on the parameters. When caring males can also remate, or when females can increase the clutch size by deserting, there is stronger selection for male-biased care. Hence, we argue that the mating-caring trade-off for males is neither a necessary consequence of anisogamy nor sufficient to select for female-biased care. Instead, the factors excluded from our models—costly competitive traits, sexual selection, and partial parentage—may be necessary for the parental investment hypothesis to work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号