首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas.  相似文献   

5.
6.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

7.
The actinin-associated LIM protein (ALP) genes belong to the PDZ/LIM protein family which is characterized by the presence of both a PDZ and a LIM domain. The ALP subfamily in mammals has four members: ALP, Elfin, Mystique and RIL. In this study, we have annotated and cloned the zebrafish ALP gene family and identified a zebrafish-specific fifth member of the family, the alp-like gene. We compared the zebrafish sequences to their human and mouse orthologues. A phylogenetic analysis based on the amino acid sequences showed the overall high degree of conservation within the family. We describe here the expression patterns for all five ALP family genes during zebrafish development. Whole mount in situ hybridization results revealed common and distinct expression patterns for the five genes. With the exception of elfin, all genes were expressed as maternal RNAs at early developmental stages. Gene expression for all of them appeared regulated and localized in specific regions at the eight different developmental stages studied. Expression for all five genes was observed in the central nervous system (CNS), which led us to further investigate brain-specific expression in sections of embryos at 2 days of development. In summary, we identified the zebrafish orthologues of the ALP family and determined their gene expression patterns during zebrafish embryogenesis. Finally, we compare our results to the limited expression data available for this gene family during mammalian development.  相似文献   

8.
9.
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.  相似文献   

10.
The dorsoventral polarity of the vertebrate embryo is established through interactions between ventrally expressed bone morphogenetic proteins and their organizer-borne antagonists Noggin, Chordin, and Follistatin. While the opposing interactions between Short Gastrulation/Chordin and Decapentaplegic/BMP4 have been evolutionarily conserved in arthropods and vertebrates, there has been up to now no functional evidence of an implication of Noggin in the early patterning of organisms other than Xenopus. We have studied the contribution of Noggin to the embryonic development of the zebrafish. While single-copy noggin genes have been characterized in several vertebrate species, we report that the zebrafish genome harbors three noggin homologues. Overexpression experiments show that Noggin1, Noggin2, and Noggin3 can antagonize ventralizing BMPs. While all three factors have similar biological activities, their embryonic expression is different. The combined expression of the three genes recapitulates the different aspects of the expression of the single-copy noggin genes of other organisms. This suggests that the three zebrafish noggin genes and the single noggin genes of other vertebrates have evolved from a common ancestor and that subsequent differential loss of tissue-specific elements in the promoters of the different zebrafish genes accounts for their more restricted spatiotemporal expression. Finally we show that noggin1 is expressed in the fish organizer and able to dorsalize the embryo, suggesting its implication in the dorsoventral patterning of the zebrafish.  相似文献   

11.
The Roundabout (Robo) family of receptors and their extracellular ligands, the Slit protein family, play important roles in repulsive axon guidance. First identified in Drosophila, Robo receptors form an evolutionarily conserved sub-family of the immunoglobulin (Ig) superfamily that are characterized by the presence of five Ig repeats and three fibronectin-type III repeats in the extracellular domain, a transmembrane domain, and a cytoplasmic domain with several conserved motifs that play important roles in Robo-mediated signaling (Cell 92 (1998) 205; Cell 101 (2000) 703). Robo family members have now been identified in C. elegans, Xenopus, rat, mouse, and human (Cell 92 (1998) 205; Cell 92 (1998) 217; Cell 96 (1999) 807; Dev. Biol. 207 (1999) 62). Furthermore, multiple robo genes have been described in Drosophila, rat, mouse and humans, raising the possibility of potential redundancy and diversity in robo gene function. As a first step in elucidating the role of Robo receptors during vertebrate development, we identified and characterized two Robo family members from zebrafish. We named these zebrafish genes robo1 and robo3, reflecting their amino acid sequence similarity to other vertebrate robo genes. Both genes are dynamically expressed in the developing nervous system in distinct patterns. robo3 is expressed during the first day of development in the hindbrain and spinal cord and is later expressed in the tectum and retina. robo1 nervous system expression appears later in development and is more restricted. Moreover, both genes are expressed in non-neuronal tissues consistent with additional roles for these genes during development.  相似文献   

12.
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs.  相似文献   

13.
14.
斑马鱼中囊胚过渡(MBT)始于受精卵的第10次卵裂,此时亦伴有细胞周期延长,分裂同步性丧失,合子型基因开始转录活化,胚胎细胞开始具备运动迁移能力等现象。斑马鱼MBT。的发生依赖于胚胎细胞的核质比,胚胎细胞周期中的G1时相则只有在合子型基因组开始被转录活化后才能出现。细胞周期检验点的激活可能也是受转录调控的,但中期检验点对DNA复制抑制状态的响应不仅在MBT前后、甚至在MBT前的不同阶段也可能有具体作用途径的差异。活化的P38蛋白在胚胎中的不对称分布是维持卵裂阶段细胞分裂同步性的关键因素。尽管大规模的合子型基因的表达发生在MBT开始后,也有少数与胚层分化有关的合子型基因是在MBT。前表达的,还有一些既有母型表达也有合子型表达的基因在MBT前后分别参与不同的信号途径来调控胚胎的发育与分化。  相似文献   

15.
Three homologues of the Drosophilaregion-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known salDNA sequences showed zebrafish sall1aand sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1bresulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.  相似文献   

16.
17.
18.
为进一步探究鱼类性别决定的相关机理, 增加对鱼类性控基因表达和功能的认识, 克隆斑马鱼fem-1c 基因并对其进行表达分析。研究采用RACE-PCR方法从斑马鱼卵巢组织cDNA中克隆了fem-1c的cDNA全长序列, 其大小为2701 bp, 编码618个氨基酸。生物信息学分析显示, 斑马鱼FEM-1C蛋白包含9个ANK结构域、2个TPR结构域和2个低复杂性区域, 与其他脊椎动物的FEM-1C蛋白序列保守性较高。脊椎动物的fem-1c与tmed7、trim36等邻近的45个基因具有保守的同线性关系。半定量RT-PCR实验结果显示斑马鱼fem-1c在受精后17d开始表达, 并特异地表达于成体卵巢组织中。RNA原位杂交结果显示, fem-1c基因mRNA定位于卵巢组织的Ⅰ期和Ⅱ期卵母细胞胞质中。fem-1c的时空表达特征暗示其在斑马鱼卵巢分化中具有重要作用。    相似文献   

19.
Xue Y  Kuok C  Xiao A  Zhu Z  Lin S  Zhang B 《遗传学报》2010,37(10):685-693
Mical(molecule interacting with CasL)represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes,including axon guidance,cell movement,cell-cell junction formation,vesicle trafficking and cancer cell metastasis.However,the expression and function of these genes during embryonic development have not been comprehensively characterized,especially in vertebrate species,although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates.So far,no mica/family homologs have been reported in zebrafish,an ideal vertebrate model for the study of developmental processes.Here we report eight homologs of m/ca/family genes in zebrafish and their expression profiles during embryonic development.Consistent with the findings in Drosophila and mammals,most zebrafish mical family genes display expression in neural and musculature systems.In addition,five mica/homologs are detected in heart,and one,micall2a,in blood vessels.Our data established an important basis for further functional studies of mica/family genes in zebrafish,and suggest a possible role for mica/genes in cardiovascular development.  相似文献   

20.
The SOUL/p22HBP family is an evolutionarily ancient group of heme binding proteins with a main function as cytosolic buffer against tetrapyrrole accumulation. Structural and biochemical evidence suggest specialized roles in blood formation, necrotic cell death and chemotaxis. To date, nothing is known about the precise activity and expression patterns of this class of heme binding proteins during development. The zebrafish genome possesses five soul genes belonging to two subgroups, and no p22HBP orthologous gene. Here, spatial and temporal expression patterns are reported for zebrafish soul1, soul2 and soul4 genes. All three soul genes are maternally transcribed, and their zygotic expression takes place in unique (heart, pharynx, yolk syncytial layer, brain, eyes, lateral line) and overlapping (pronephros, pituitary gland, olfactory and otic vesicle) regions of the zebrafish embryo. Our study constitutes the first detailed analysis of soul gene expression in metazoan development, and provides the basis to understand the genetics of tetrapyrrole metabolism in a wide range of embryonic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号