首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Molecular studies of unstable regions in the human genome have identified region-specific low-copy repeats (LCRs). Unlike highly repetitive sequences (e.g. Alus and LINEs), LCRs are usually of 10-400 kb in size and exhibit > or = 95-97% similarity. According to computer analyses of available sequencing data, LCRs may constitute >5% of the human genome. Through the process of non-allelic homologous recombination using paralogous genomic segments as substrates, LCRs have been shown to facilitate meiotic DNA rearrangements associated with disease traits, referred to as genomic disorders. In addition, this LCR-based complex genome architecture appears to play a major role in both primate karyotype evolution and human tumorigenesis.  相似文献   

7.
8.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

9.
10.
11.
Inter-Alu PCR is increasingly useful in human genome mapping studies. One use is the generation of alumorphs, polymorphisms resulting from the presence or absence of inter-Alu PCR products. In this study, we have increased the proportion of the genome that can be analyzed by this technique with the use of long interspersed elements (LINEs). The set of polymorphisms detected by both Alu and LINE primers are referred to as interspersed repetitive sequence variants or IRS-morphs. Since a presence-absence variant may have been the result of a recent Alu or LINE insertion, we analyzed 7 isolated IRS-morphs that were generated, in part, with a primer derived from either a consensus LINE or a young Alu subfamily specific sequence, and observed by Southern blot analysis that these variants resulted from other types of genomic alterations. The use of these primers, however, reduces background from the numerous LINEs and Alu elements in the genome, providing sharp DNA fingerprint profiles. We have demonstrated the potential usefulness of these IRS-morph profiles in human population studies. We compared 12 IRS-morphs from a single amplification reaction from five distinct population groups (Caucasian (northern European descent), Hispanic (Mexican-American), Hindu-Indian, Papua New Guinean, and Greenland Eskimo) and observed that most have variable allelic frequencies among populations. The utilization of additional IRS-morph profiles will perpetuate this technique as a tool for DNA fingerprinting and for the analysis of human populations. Key words : Alu elements, DNA fingerprint, human populations, LINEs, SINEs.  相似文献   

12.
A systematic screening and analysis of repeated DNA sequences from a dog genomic library composed of small DNA inserts enabled us to characterize abundant canine repetitive DNA families. Four main families were identified: i) a group of highly repeated tRNA-derived short interspersed repetitive DNA elements (tRNA-SINEs); ii) another type of SINE-like element that was mainly found inserted into long interspersed repetitive elements (LINEs); iii) LINEs of the L1 type; and iv) satellite or satellite-like DNA. Surprisingly, no SINEs derived from 7SL RNA were found in the dog genome. These data should help in the analysis of canine DNA sequences and in the design of canine genome mapping reagents. Received: 4 November 1998 / Accepted: 2 February 1999  相似文献   

13.
14.
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.  相似文献   

15.
Although most LINEs (long interspersed nuclear elements), which are autonomous non-long-terminal-repeat retrotransposons, are inserted throughout the host genome, three groups of LINEs, the early-branched group, the Tx group, and the R1 clade, are inserted into specific sites within the target sequence. We previously characterized the sequence specificity of the R1 clade elements. In this study, we screened the other two groups of sequence-specific LINEs from public DNA databases, reconstructed elements from fragmented sequences, identified their target sequences, and analyzed them phylogenetically. We characterized 13 elements in the early-branched group and 13 in the Tx group. In the early-branched group, we identified R2 elements from sea squirts and zebrafish in this study, although R2 has not been characterized outside the arthropod group to date. This is the first evidence of cross-phylum distribution of sequence-specific LINEs. The Dong element also occurs across phyla, among arthropods and mollusks. In the Tx group, we characterized five novel sequence-specific families: Kibi for TC repeats, Koshi for TTC repeats, Keno for the U2 snRNA gene, Dewa for the tRNA tandem arrays, and Mutsu for the 5S rRNA gene. Keno and Mutsu insert into the highly conserved region within small RNA genes and destroy the targets. Several copies of Dewa insert different positions of tRNA tandem array, which indicates a certain "site specifier" other than sequence-specific endonuclease. In all three groups, LINEs specific for the rRNA genes or microsatellites can occur as multiple families in one organism. This indicates that the copy number of a target sequence is the primary factor to restrict the variety of sequence specificity of LINEs.  相似文献   

16.
17.
18.
19.
Comparative analysis of processed pseudogenes in the mouse and human genomes   总被引:16,自引:0,他引:16  
Pseudogenes are important resources in evolutionary and comparative genomics because they provide molecular records of the ancient genes that existed in the genome millions of years ago. We have systematically identified approximately 5000 processed pseudogenes in the mouse genome, and estimated that approximately 60% are lineage specific, created after the mouse and human diverged. In both mouse and human genomes, similar types of genes give rise to many processed pseudogenes. These tend to be housekeeping genes, which are highly expressed in the germ line. Ribosomal-protein genes, in particular, form the largest sub-group. The processed pseudogenes in the mouse occur with a distinctly different chromosomal distribution than LINEs or SINEs - preferentially in GC-poor regions. Finally, the age distribution of mouse-processed pseudogenes closely resembles that of LINEs, in contrast to human, where the age distribution closely follows Alus (SINEs).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号