首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

With the purpose of designing novel chemical entities with improved inhibitory potencies against drug-resistant Mycobacterium tuberculosis, the 3D- quantitative structure–activity relationship (QSAR) studies were carried out on biphenyl analogs of the tuberculosis (TB) drug, PA-824. Anti-mycobacterial activity (MABA) was considered for the 3D-QSAR studies using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The best CoMFA and CoMSIA models were found statistically significant with cross-validated coefficients (q2) of 0.784 and 0.768, respectively, and conventional coefficients (r2) of 0.823 and 0.981, respectively. The cross-validated and the external validation results revealed that both the CoMFA and CoMSIA models possesses high accommodating capacities and they would be reliable for predicting the pMIC values of new PA-824 derivatives. Based on the models and structural insights, a series of new PA-824 derivatives were designed and the anti-mycobacterial activities of the designed compounds were predicted based on the best 3D-QSAR model. The predicted data results suggest the designed compounds are more potent than existed ones.  相似文献   

2.
The nonmevalonate pathway (NMP) of isoprene biosynthesis is an exciting new route toward novel antibiotic development. Inhibitors against several enzymes in this pathway are currently under examination. A significant liability of many of these agents is poor cell penetration. To overcome and improve our understanding of this problem, we have synthesized a series of lipophilic, prodrug analogs of fosmidomycin and FR900098, inhibitors of the NMP enzyme Dxr. Several of these compounds show improved antibacterial activity against a panel of organisms relative to the parent compound, including activity against Mycobacterium tuberculosis (Mtb). Our results show that this strategy can be an effective way for improving whole cell activity of NMP inhibitors.  相似文献   

3.
A series of novel aryl and thiophenyl tethered dihydro-6H-quinolin-5-ones have been synthesized in very good yields through CeCl3·7H2O-NaI catalyzed one-pot condensation of β-enaminones derived from the respective methyl ketones; 1,3-cyclohexanedione & 5,5-dimethyl-1,3-cyclohexanedione and ammonium acetate refluxing in 2-propanol. Dihydro-6H-quinolin-5-ones 3a-f was further derivatized to the respective hydroxymethyl analogs using proline as an organocatalyst in aqueous media. Among the all 18 compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB), dihydro-6H-quinolin-5-ones 4e and 4f were found to be most active with MIC 3.13 μg/mL.  相似文献   

4.
1,4-Dihydropyridines are the emerging class of antitubercular agent. Recently, studies have revealed that 1,4-dihydropyridine-3,5-dicarbamoyl derivatives with lipophilic groups have demonstrated excellent antitubercular activity. We have synthesized new N-aryl-1,4-dihydropyridines bearing carbethoxy and acetyl group at C-3 and C-5 of the DHP ring. In addition, 1H-pyrazole ring is substituted at C-4 position. The lowest minimum inhibitory concentration value, 0.02 μg/mL, was found for diethyl 1-(2-chlorophenyl)-1,4-dihydro-2,6-dimethyl-4-(1,3-diphenyl-1H-pyrazol-4-yl)pyridine-3,5-dicarboxylate 4e making it more potent than first line antitubercular drug isoniazid. In addition, this compound exhibited relatively low cytotoxicity.  相似文献   

5.
Lipidomics is a subspecialty of metabolomics that focuses on water insoluble metabolites that form membrane barriers. Most lipidomic databases catalog lipids from common model organisms, like humans or Escherichia coli. However, model organisms' lipid profiles show surprisingly little overlap with those of specialized pathogens, creating the need for organism-specific lipidomic databases. Here we review rapid progress in lipidomic platform development with regard to chromatography, detection and bioinformatics. We emphasize new methods of comparative lipidomics, which use aligned datasets to identify lipids changed after introducing a biological variable. These new methods provide an unprecedented ability to broadly and quantitatively describe lipidic change during biological processes and identify changed lipids with low error rates.  相似文献   

6.
The present study was undertaken to optimize the anti-tubercular activity of 2-acetamido-2-deoxy-β-d-glucopyranosyl N,N-dimethyldithiocarbamate (OCT313, Glc-NAc-DMDC), a lead compound previously reported by us. Structural modifications of OCT313 included the replacements of the DMDC group at C-1 by pyrrolidine dithiocarbamate (PDTC) and the acetyl group at C-2 by either propyl, butyl, benzyl or oleic acid groups. The antimycobacterial activities of these derivatives were evaluated against Mycobacterium tuberculosis (MTB). Glc-NAc-pyrrolidine dithiocarbamate (OCT313HK, Glc-NAc-PDTC) exhibited the most potent anti-tubercular activity with the minimal inhibitory concentration (MIC) of 6.25-12.5 μg/ml. The antibacterial activity of OCT313HK was highly specific to MTB and Mycobacterium bovis BCG, but not against Mycobacterium avium, Mycobacterium smegmatis, Staphylococcus aureus or Escherichia coli. Importantly, OCT313HK was also effective against MTB clinical isolates, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Interestingly, OCT313HK was exerted the primary bactericidal activity, and it was also exhibited the bacteriolytic activity at high concentrations. We next investigated whether the mycobacterial monooxygenase EthA, a common activator of thiocarbamide-containing anti-tubercular drugs, also activated OCT313HK. Contrary to our expectations, the anti-tubercular activity of dithiocarbamate sugar derivatives and dithiocarbamates were not dependent on ethA expression, in contrast to thiocarbamide-containing drugs. Overall, this study presents OCT313HK as a novel and potent compound against MTB, particularly promising to overcome drug resistance.  相似文献   

7.
8.
A new class of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones was synthesized in very good yields through polyphosphoric acid supported on silica (PPA-SiO2) catalyzed one-pot three component condensation of 2-dibenzofuranol; aromatic aldehydes and acetamide or benzamide or urea under solvent free conditions. At 125 °C the reaction led to the formation of amidoalkyl dibenzofuranols 5a-k where as at 160 °C cyclization take place to give oxazin-3(2H)-one analogues 6a-e. Screening all the 16 compounds for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB) resulted 1-((4-chlorophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5h; 1-((4-bromophenyl)(2-hydroxydibenzo[b,d]furanyl)methyl)urea 5i; 1-phenyl-1H-benzo[2,3]benzo furo[4,5-e][1,3]oxazin-3(2H)-one 6a (MIC 3.13 μg/mL) and 1-(4-chlorophenyl)-1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-one 6b; 1-(4-bromophenyl)-1H-benzo[2,3]benzofuro [4,5-e][1,3]oxazin-3(2H)-one 6c (MIC 1.56 μg/mL) as most active antitubercular agents.  相似文献   

9.
A series of novel N-(3-aryl-1,2,4-triazol-5-yl) cinnamamide derivatives were designed on basis of structural similarity to the known FAS II inhibitors. Topliss operational method was used to optimize the potency of molecules. The minimum inhibitory concentration (MIC) of all synthesized compounds was determined against Mycobacterium tuberculosis H(37)R(v) using resazurin microtitre assay (REMA) plate method. The synthesized compounds exhibit antimycobacterial activity in the range of 5-95μM with a good safety profile.  相似文献   

10.
The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to latent infection. Although many factors are involved, the mammalian autophagy pathway is recognized as a determinant that can influence the course of infection. Intervention aimed at utilizing autophagy to clear infection requires an examination of the autophagy and signal transduction induced by mycobacteria under native conditions. With both pathogenic and non-pathogenic mycobacteria, we show that infection correlates with an increase in the mammalian target of rapamycin (mTOR) activity indicating that autophagy induction by mycobacteria occurs in an mTOR-independent manner. Analysis of Mycobacterium smegmatis and Mycobacterium bovis bacille Calmette-Guérin (BCG), which respectively induce high and low autophagy responses, indicates that lipid material is capable of inducing both autophagy and mTOR signaling. Although mycobacterial infection potently induces mTOR activity, we confirm that bacterial viability can be reduced by rapamycin treatment. In addition, our work demonstrates that BCG can reduce autophagy responses to M. smegmatis suggesting that specific mechanisms are used by BCG to minimize host cell autophagy. We conclude that autophagy induction and mTOR signaling take place concurrently during mycobacterial infection and that host autophagy responses to any given mycobacterium stem from multiple factors, including the presence of activating macromolecules and inhibitory mechanisms.  相似文献   

11.
Prostaglandins (PGs) and leukotrienes (LTs) are produced in Mycobacterium tuberculosis (Mtb)-infected lungs and have immune suppressive and protective effects, respectively. Considering that both of these mediators are produced during mycobacterial infection, we investigated the specific and relative biological importance of each in regulating host response in experimental tuberculosis. Administration of celecoxib, which was found to reduce lung levels of PGE2 and increase LTB4, enhanced the 60-day survival of Mtb-infected mice in 14%. However administration of MK-886, which reduced levels of LTB4 but did not enhance PGE2, reduced 60-day survival from 86% to 43% in Mtb-infected mice, and increased lung bacterial burden. MK-886 plus celecoxib reduced survival to a lesser extent than MK-886 alone. MK-886- and MK-886 plus celecoxib-treated animals exhibited reduced levels of the protective interleukin-12 and gamma-interferon. Our findings indicate that in this model, the protective effect of LTs dominates over the suppressive effect of PGs.  相似文献   

12.
The mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) method is one of the most important methods that have been used in recent years for genotyping Mycobacterium tuberculosis. Agarose gel electrophoresis and capillary electrophoresis have been used to determine the size of amplicons, however, both of these methods have shortcomings. Here, we develop and evaluate a novel method for MIRU-VNTR typing based on high resolution melting (HRM) analysis. The MIRU40 locus was selected to evaluate different real-time PCR machines and the accuracy of our method; the Roche LightCycler 480 provided greatest consistency between the Tm value and repeat number and was used in subsequent evaluations. Our method gives greater accuracy in comparison with conventional agarose gel electrophoresis (98.9% vs. 90.9%, p = 0.017), and, with the help of fitting formulae, can be used to obtain the number of MIRU tandem repeats from the Tm value. To validate our method we analyzed 12 classical MIRU loci to genotype 88 clinical isolates. The number of MIRU tandem repeats was determined accurately, quickly and conveniently.  相似文献   

13.
A series of N- and C-alkylated amino alcohols and of their protected galactopyranosyl derivatives was synthesized and evaluated for antitubercular activity. Five of these compounds displayed good activity, with a MIC below 12.5 μg/mL. The presence of the carbohydrate slightly affected the antibacterial activity.  相似文献   

14.
The syntheses and comparative studies of the spectral, voltammetry and spectroelectrochemical properties of new manganese phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral positions (complex 3b) are reported. Solution electrochemistry of complex 3a showed quasi-reversible metal-based (MnIIIPc−2/MnIIPc2, E1/2 = −0.07 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.78 V vs. Ag|AgCl) reductions, but no ring-based oxidation. However, complex 3b showed weak irreversible ring-oxidation signal (Ep = +0.86 vs. Ag|AgCl). Reversible metal-based (MnIIIPc−2/MnIIPc−2, E1/2 = −0.04 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.68 V vs. Ag|AgCl) reductions were also observed for complex 3b. Spectroelectrochemistry was used to confirm these processes. Reduction process involving the metal (MnIIIPc−2/MnIIPc−2) was associated with the formation of manganese μ-oxo complex in complex 3a.  相似文献   

15.
In this work we are proposing Homology modeled structures of Mycobacterium leprae 18kDa heat shock protein and its mutant. The more closely related structure of the small heat shock protein (sHSP) belonging to the eukaryotic species from wheat sHSP16.9 and 16.3kDa ACR1 protein from Mycobacterium tuberculosis were used as template structures. Each model contains an N-terminal domain, alpha-crystalline domain and a C-terminal tail. The models showed that a single point mutation from serine to proline at 52nd position causes structural changes. The structural changes are observed in N-terminal region and alpha-crystalline domains. Serine in 52nd position is observed in β4 strand and Proline in 52nd position is observed in loop. The number of residues contributing α helix at N-terminal region varies in both models. In 18S more number of residues is present in α helix when compared to 18P. The loop regions between β3 and β4 strands of both models vary in number of residues present in it. Number of residues contributing β4 strand in both models vary. β6 strand is absent in both models. Major functional peptide region of alpha crystalline domains of both models varies. These differences observed in secondary structures support their distinct functional roles. It also emphasizes that a point mutation can cause structural variation.  相似文献   

16.
17.
The crystal structure of the enzyme 3-isopropylmalate dehydrogenase (IPMDH) from Mycobacterium tuberculosis (LeuB, Mtb-IPMDH, Rv2995c) without substrate or co-factor was determined at 1.65 A resolution, which is the highest resolution reported for an IPMDH to date. The crystals contain two functional dimers in the asymmetric unit in an arrangement close to a tetramer of D2 symmetry. Despite the absence of a substrate or inhibitor bound to the protein, the structure of the monomer resembles the previously observed closed form of the enzyme more closely than the open form. A comparison with the substrate complex of IPMDH from Thiobacillus ferrooxidans and the co-factor complex of the Thermus thermophilus enzyme revealed a close relationship of the active-site architecture between the various bacterial enzymes. The inhibitor O-isobutenyl oxalylhydroxamate was found to bind to the active site of IPMDH in a mode similar to the substrate isopropylmalate.  相似文献   

18.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

19.
Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme-pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity. In order to test a potential structural role of the adduct that supports catalase activity, we have used resonance Raman spectroscopy to probe the local heme environment of KatG(Y229F). In comparison to wild-type KatG, resting KatG(Y229F) contains a significant amount of 6-coordinate, low-spin heme and a more planar heme. Resonance Raman spectroscopy of the ferrous-CO complex of KatG(Y229F) suggest a non-linear Fe-CO binding geometry that is less tilted than in wild-type KatG. These data provide evidence that the Met-Tyr-Trp adduct imparts structural stability to the active site of KatG that seems to be important for sustaining catalase activity.  相似文献   

20.
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7A. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号