首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A popular design for clinical trials assessing targeted therapies is the two-stage adaptive enrichment design with recruitment in stage 2 limited to a biomarker-defined subgroup chosen based on data from stage 1. The data-dependent selection leads to statistical challenges if data from both stages are used to draw inference on treatment effects in the selected subgroup. If subgroups considered are nested, as when defined by a continuous biomarker, treatment effect estimates in different subgroups follow the same distribution as estimates in a group-sequential trial. This result is used to obtain tests controlling the familywise type I error rate (FWER) for six simple subgroup selection rules, one of which also controls the FWER for any selection rule. Two approaches are proposed: one based on multivariate normal distributions suitable if the number of possible subgroups, k, is small, and one based on Brownian motion approximations suitable for large k. The methods, applicable in the wide range of settings with asymptotically normal test statistics, are illustrated using survival data from a breast cancer trial.  相似文献   

2.
Thall PF  Nguyen HQ  Estey EH 《Biometrics》2008,64(4):1126-1136
SUMMARY: A Bayesian sequential dose-finding procedure based on bivariate (efficacy, toxicity) outcomes that accounts for patient covariates and dose-covariate interactions is presented. Historical data are used to obtain an informative prior on covariate main effects, with uninformative priors assumed for all dose effect parameters. Elicited limits on the probabilities of efficacy and toxicity for each of a representative set of covariate vectors are used to construct bounding functions that determine the acceptability of each dose for each patient. Elicited outcome probability pairs that are equally desirable for a reference patient are used to define two different posterior criteria, either of which may be used to select an optimal covariate-specific dose for each patient. Because the dose selection criteria are covariate specific, different patients may receive different doses at the same point in the trial, and the set of eligible patients may change adaptively during the trial. The method is illustrated by a dose-finding trial in acute leukemia, including a simulation study.  相似文献   

3.
Polley MY  Cheung YK 《Biometrics》2008,64(1):232-241
Summary.   We deal with the design problem of early phase dose-finding clinical trials with monotone biologic endpoints, such as biological measurements, laboratory values of serum level, and gene expression. A specific objective of this type of trial is to identify the minimum dose that exhibits adequate drug activity and shifts the mean of the endpoint from a zero dose to the so-called minimum effective dose. Stepwise test procedures for dose finding have been well studied in the context of nonhuman studies where the sampling plan is done in one stage. In this article, we extend the notion of stepwise testing to a two-stage enrollment plan in an attempt to reduce the potential sample size requirement by shutting down unpromising doses in a futility interim. In particular, we examine four two-stage designs and apply them to design a statin trial with four doses and a placebo in patients with Hodgkin's disease. We discuss the calibration of the design parameters and the implementation of these proposed methods. In the context of the statin trial, a calibrated two-stage design can reduce the average total sample size up to 38% (from 125 to 78) from a one-stage step-down test, while maintaining comparable error rates and probability of correct selection. The price for the reduction in the average sample size is the slight increase in the maximum total sample size from 125 to 130.  相似文献   

4.
Imhof L  Wong WK 《Biometrics》2000,56(1):113-117
We consider the problem of designing an experiment when there are two competing optimality criteria. Designs that maximize the minimum efficiencies under the two criteria are proposed along with a graphical method for finding these maximin designs.  相似文献   

5.
6.
Adaptive designs for normal responses with prognostic factors   总被引:1,自引:0,他引:1  
  相似文献   

7.
Recent success of sequential administration of immunotherapy following radiotherapy (RT), often referred to as immunoRT, has sparked the urgent need for novel clinical trial designs to accommodate the unique features of immunoRT. For this purpose, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose RT to identify the optimal dose that is personalized for each patient according to his/her measurements of PD-L1 expression at baseline and post-RT. We model the immune response, toxicity, and efficacy as functions of dose and patient's baseline and post-RT PD-L1 expression profile. We quantify the desirability of the dose using a utility function and propose a two-stage dose-finding algorithm to find the personalized optimal dose. Simulation studies show that our proposed design has good operating characteristics, with a high probability of identifying the personalized optimal dose.  相似文献   

8.
Chen YI 《Biometrics》1999,55(4):1258-1262
Lim and Wolfe (1997, Biometrics 53, 410-418) proposed rank-based multiple test procedures for identifying the dose levels that are more effective than the zero-dose control in randomized complete block designs when it can be assumed that the efficacy of the increasing dose levels is monotonically increasing up to a point, followed by a monotonic decrease. Modifications of the Lim-Wolfe tests are suggested that provide more practical and powerful alternatives. Two numerical examples are illustrated and the results of a Monte Carlo power study are presented.  相似文献   

9.
10.
ABSTRACT: Adaptive designs allow planned modifications based on data accumulating within a study. The promise of greater flexibility and efficiency stimulates increasing interest in adaptive designs from clinical, academic, and regulatory parties. When adaptive designs are used properly, efficiencies can include a smaller sample size, a more efficient treatment development process, and an increased chance of correctly answering the clinical question of interest. However, improper adaptations can lead to biased studies. A broad definition of adaptive designs allows for countless variations, which creates confusion as to the statistical validity and practical feasibility of many designs. Determining properties of a particular adaptive design requires careful consideration of the scientific context and statistical assumptions. We first review several adaptive designs that garner the most current interest. We focus on the design principles and research issues that lead to particular designs being appealing or unappealing in particular applications. We separately discuss exploratory and confirmatory stage designs in order to account for the differences in regulatory concerns. We include adaptive seamless designs, which combine stages in a unified approach. We also highlight a number of applied areas, such as comparative effectiveness research, that would benefit from the use of adaptive designs. Finally, we describe a number of current barriers and provide initial suggestions for overcoming them in order to promote wider use of appropriate adaptive designs. Given the breadth of the coverage all mathematical and most implementation details are omitted for the sake of brevity. However, the interested reader will find that we provide current references to focused reviews and original theoretical sources which lead to details of the current state of the art in theory and practice.  相似文献   

11.
Lin Y  Shih WJ 《Biometrics》2004,60(2):482-490
The main purpose of a phase IIA trial of a new anticancer therapy is to determine whether the therapy has sufficient promise against a specific type of tumor to warrant its further development. The therapy will be rejected for further investigation if the true response rate is less than some uninteresting level and the test of hypothesis is powered at a specific target response rate. Two-stage designs are commonly used for this situation. However, in many situations investigators often express concern about uncertainty in targeting the alternative hypothesis to study power at the planning stage. In this article, motivated by a real example, we propose a strategy for adaptive two-stage designs that will use the information at the first stage of the study to either reject the therapy or continue testing with either an optimistic or a skeptic target response rate, while the type I error rate is controlled. We also introduce new optimal criteria to reduce the expected total sample size.  相似文献   

12.
Optimal response-adaptive designs in phase III clinical trial set up are gaining more interest. Most of the available designs are not based on any optimal consideration. An optimal design for binary responses is given by Rosenberger et al. (2001) and one for continuous responses is provided by Biswas and Mandal (2004). Recently, Zhang and Rosenberger (2006) proposed another design for normal responses. This paper illustrates that the Zhang and Rosenberger (2006) design is not suitable for normally distributed responses, in general. The approach cannot be extended for other continuous response cases, such as exponential or gamma. In this paper, we first describe when the optimal design of Zhang and Rosenberger (2006) fails. We then suggest the appropriate adjustments for designs in different continuous distributions. A unified framework to find optimal response-adaptive designs for two competing treatments is proposed. The proposed methods are illustrated using some real data.  相似文献   

13.
Ivanova A  Kim SH 《Biometrics》2009,65(1):307-315
Summary .  In many phase I trials, the design goal is to find the dose associated with a certain target toxicity rate. In some trials, the goal can be to find the dose with a certain weighted sum of rates of various toxicity grades. For others, the goal is to find the dose with a certain mean value of a continuous response. In this article, we describe a dose-finding design that can be used in any of the dose-finding trials described above, trials where the target dose is defined as the dose at which a certain monotone function of the dose is a prespecified value. At each step of the proposed design, the normalized difference between the current dose and the target is computed. If that difference is close to zero, the dose is repeated. Otherwise, the dose is increased or decreased, depending on the sign of the difference.  相似文献   

14.
15.
Fields such as, diagnostic testing, biotherapeutics, drug development, and toxicology among others, center on the premise of searching through many specimens for a rare event. Scientists in the business of “searching for a needle in a haystack” may greatly benefit from the use of group screening design strategies. Group screening, where specimens are composited into pools with each pool being tested for the presence of the event, can be much more cost-efficient than testing each individual specimen. A number of group screening designs have been proposed in the literature. Incomplete block screening designs are described here and compared with other group screening designs. It is shown under certain conditions, that incomplete block screening designs can provide nearly a 90% cost saving compared to other group screening designs such as when prevalence is 0.001 and screening 3876 specimens with an ICB-sequential design vs. a Dorfman design. In other cases, previous group screening designs are shown to be most efficient. Overall, when prevalence is small (≤0.05) group screening designs are shown to be quite cost effective at screening a large number of specimens and in general there is no one design that is best in all situations. © 2018 American Institute of Chemical Engineers Biotechnol Progress, 35: e2770, 2019.  相似文献   

16.
A surrogate endpoint is an endpoint that is obtained sooner, at lower cost, or less invasively than the true endpoint for a health outcome and is used to make conclusions about the effect of intervention on the true endpoint. In this approach, each previous trial with surrogate and true endpoints contributes an estimated predicted effect of intervention on true endpoint in the trial of interest based on the surrogate endpoint in the trial of interest. These predicted quantities are combined in a simple random-effects meta-analysis to estimate the predicted effect of intervention on true endpoint in the trial of interest. Validation involves comparing the average prediction error of the aforementioned approach with (i) the average prediction error of a standard meta-analysis using only true endpoints in the other trials and (ii) the average clinically meaningful difference in true endpoints implicit in the trials. Validation is illustrated using data from multiple randomized trials of patients with advanced colorectal cancer in which the surrogate endpoint was tumor response and the true endpoint was median survival time.  相似文献   

17.
Yin G  Yuan Y 《Biometrics》2009,65(3):866-875
Summary .  Two-agent combination trials have recently attracted enormous attention in oncology research. There are several strong motivations for combining different agents in a treatment: to induce the synergistic treatment effect, to increase the dose intensity with nonoverlapping toxicities, and to target different tumor cell susceptibilities. To accommodate this growing trend in clinical trials, we propose a Bayesian adaptive design for dose finding based on latent 2 × 2 tables. In the search for the maximum tolerated dose combination, we continuously update the posterior estimates for the unknown parameters associated with marginal probabilities and the correlation parameter based on the data from successive patients. By reordering the dose toxicity probabilities in the two-dimensional space, we assign each coming cohort of patients to the most appropriate dose combination. We conduct extensive simulation studies to examine the operating characteristics of the proposed method under various practical scenarios. Finally, we illustrate our dose-finding procedure with a clinical trial of agent combinations at M. D. Anderson Cancer Center.  相似文献   

18.
19.
A series of naphthalimide based organoselenocyanates were synthesized and screened for their toxicity as well as their ability to modulate several detoxifying/antioxidative enzyme levels at a primary screening dose of 3 mg/kg b.w. in normal Swiss albino mice for 30 days. Compound 4d showed highest activity in elevating the detoxifying/antioxidant enzymes levels.  相似文献   

20.
Hung et al. (2007) considered the problem of controlling the type I error rate for a primary and secondary endpoint in a clinical trial using a gatekeeping approach in which the secondary endpoint is tested only if the primary endpoint crosses its monitoring boundary. They considered a two-look trial and showed by simulation that the naive method of testing the secondary endpoint at full level α at the time the primary endpoint reaches statistical significance does not control the familywise error rate at level α. Tamhane et al. (2010) derived analytic expressions for familywise error rate and power and confirmed the inflated error rate of the naive approach. Nonetheless, many people mistakenly believe that the closure principle can be used to prove that the naive procedure controls the familywise error rate. The purpose of this note is to explain in greater detail why there is a problem with the naive approach and show that the degree of alpha inflation can be as high as that of unadjusted monitoring of a single endpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号