共查询到20条相似文献,搜索用时 0 毫秒
1.
It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES. 相似文献
2.
The crystal structure of the human hepatitis B virus capsid. 总被引:6,自引:0,他引:6
Hepatitis B is a small enveloped DNA virus that poses a major hazard to human health. The crystal structure of the T = 4 capsid has been solved at 3.3 A resolution, revealing a largely helical protein fold that is unusual for icosahedral viruses. The monomer fold is stabilized by a hydrophobic core that is highly conserved among human viral variants. Association of two amphipathic alpha-helical hairpins results in formation of a dimer with a four-helix bundle as the major central feature. The capsid is assembled from dimers via interactions involving a highly conserved region near the C terminus of the truncated protein used for crystallization. The major immunodominant region lies at the tips of the alpha-helical hairpins that form spikes on the capsid surface. 相似文献
3.
4.
Assembly of virus particles in infected cells is likely to be a tightly regulated process. Previously, we found that in vitro assembly of hepatitis B virus (HBV) capsid protein is highly dependent on protein and NaCl concentration. Here we show that micromolar concentrations of Zn2+ are sufficient to initiate assembly of capsid protein, whereas other mono- and divalent cations elicited assembly only at millimolar concentrations, similar to those required for NaCl-induced assembly. Altered intrinsic protein fluorescence and highly cooperative binding of at least four Zn2+ ions (KD approximately 7 microM) indicated that binding induced a conformational change in capsid protein. At 37 degrees C, Zn2+ enhanced the initial rate of assembly and produced normal capsids, but it did not alter the extent of assembly at equilibrium. Assembly mediated by high zinc concentrations (> or =300 microM) yielded few capsids but produced a population of oligomers recognized by capsid-specific antibodies, suggesting a kinetically trapped assembly reaction. Comparison of kinetic simulations to in vitro assembly reactions leads us to suggest that kinetic trapping was due to the enhancement of the nucleation rate relative to the elongation rate. Zinc-induced HBV assembly has hallmarks of an allosterically regulated process: ligand binding at one site influences binding at other sites (cooperativity) indicating that binding is associated with conformational change, and binding of ligand alters the biological activity of assembly. We conclude that zinc binding enhances the kinetics of assembly by promoting formation of an intermediate that is readily consumed in the reaction. Free zinc ions may not be the true in vivo activator of assembly, but they provide a model for regulation of assembly. 相似文献
5.
Signals for bidirectional nucleocytoplasmic transport in the duck hepatitis B virus capsid protein
下载免费PDF全文

Hepadnavirus genome replication involves cytoplasmic and nuclear stages, requiring balanced targeting of cytoplasmic nucleocapsids to the nuclear compartment. In this study, we analyze the signals determining capsid compartmentalization in the duck hepatitis B virus (DHBV) animal model, as this system also allows us to study hepadnavirus infection of cultured primary hepatocytes. Using fusions to the green fluorescent protein as a functional assay, we have identified a nuclear localization signal (NLS) that mediates nuclear pore association of the DHBV nucleocapsid and nuclear import of DHBV core protein (DHBc)-derived polypeptides. The DHBc NLS mapped is unique. It bears homology to repetitive NLS elements previously identified near the carboxy terminus of the capsid protein of hepatitis B virus, the human prototype of the hepadnavirus family, but it maps to a more internal position. In further contrast to the hepatitis B virus core protein NLS, the DHBc NLS is not positioned near phosphorylation target sites that are generally assumed to modulate nucleocytoplasmic transport. In functional assays with a knockout mutant, the DHBc NLS was found to be essential for nuclear pore association of the nucleocapsid. The NLS was found to be also essential for virus production from the full-length DHBV genome in transfected cells and from hepatocytes infected with transcomplemented mutant virus. Finally, the DHBc additionally displayed activity indicative of a nuclear export signal, presumably counterbalancing NLS function in the productive state of the infected cell and thereby preventing nucleoplasmic accumulation of nucleocapsids. 相似文献
6.
Three-dimensional localization of the smallest capsid protein in the human cytomegalovirus capsid
下载免费PDF全文

The smallest capsid proteins (SCPs) of the human herpesviruses differ substantially in size and sequence and are thought to impart some unique aspects of infection to their respective viruses. We used electron cryomicroscopy and antibody labeling to show that the 8-kDa SCP of human cytomegalovirus is attached only to major capsid protein subunits of the hexons, not the pentons. Thus, the SCPs of different herpesviruses illustrate that a protein can evolve significantly in sequence, structure, and function, while preserving its role in the architecture of the virus by binding to a specific partner in a specific oligomeric state. 相似文献
7.
8.
在人乳头瘤病毒(human papillomavirus,HPV)次要衣壳蛋白L2的N端和C端,有大量带正电荷的氨基酸残基组成核定位信号(nuclear localization signal,NLS)。细胞的核结构域10(nuclear domain 10,ND10)是细胞周期和病毒生活周期的重要调节者。L2定位到ND10的过程不仅会受到早幼粒细胞白血病蛋白(promyleocytic leukaemia protein,PML)、死亡结构域相关蛋白(deathdomain-associated protein,Daxx)、Sp100核抗原(Sp100 nuclear antigen)等细胞蛋白的影响,也会与L1在ND10发生相互作用。在HPV感染和组装过程中,L2的核定位信号有着重要作用。 相似文献
9.
The integration of hepatitis B viral sequences in the human hepatoma Alexander cell line has been investigated after fractionation of the cell line DNA by centrifugation in a Cs2SO4/BAMD (3,6-(bis-acetato mercurimethyl) dioxane) density gradient. Eight out of nine integrated viral sequences were localized in DNA component H3, which only represents 4% of the human genome and matches the base composition of HBV sequences. These results indicate a targeting and/or a higher stability of the latter in a specific, small compartment of the host genome. 相似文献
10.
Competing hydrophobic and screened-coulomb interactions in hepatitis B virus capsid assembly
下载免费PDF全文

Recent experiments show that, in the range from approximately 15 to 45 degrees C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid. 相似文献
11.
Bourne C Lee S Venkataiah B Lee A Korba B Finn MG Zlotnick A 《Journal of virology》2008,82(20):10262-10270
The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. 相似文献
12.
Characterization of hepatitis B virus capsid particle assembly in Xenopus oocytes. 总被引:1,自引:0,他引:1
下载免费PDF全文

Little is known about the assembly of the 28-nm nucleocapsid or core particle of hepatitis B virus. Here we show that this assembly process can be reconstituted in Xenopus oocytes injected with a synthetic mRNA encoding the hepatitis B virus capsid protein (p21.5). Injected oocytes produce both a nonparticulate p21.5 species (free p21.5) and capsid particles. We describe rapid and simple methods for fractionating these species on a small scale either with step gradients of 10 to 60% (wt/vol) sucrose or by centrifugation to pellet the particles, and we characterize the oocyte core particles. Free p21.5 exhibits chemical and physical properties distinctly different from those of particles. Free p21.5 is partially cleaved by proteinase K, whereas core particles are almost completely resistant to cleavage. This suggests that the carboxyl-terminal protamine region, the main target for proteases within p21.5, is exposed in free p21.5 but faces the interior of the p21.5 core particle. Finally, pulse-chase experiments demonstrated that free p21.5 can be chased almost quantitatively into core particles, establishing that free p21.5 is fully competent to form particles and represents an assembly intermediate on the pathway for core particle formation. However, core particle assembly appears very dependent on p21.5 concentration and is rapidly compromised if the p21.5 concentration is lowered. The advantages of oocytes for studying assembly are discussed. 相似文献
13.
14.
15.
Oh W Yang MR Lee EW Park KM Pyo S Yang JS Lee HW Song J 《The Journal of biological chemistry》2006,281(40):30166-30174
The clinical manifestations of West Nile virus (WNV), a member of the Flavivirus family, include febrile illness, sporadic encephalitis, and paralysis. The capsid (Cp) of WNV is thought to participate in these processes by inducing apoptosis through mitochondrial dysfunction and activation of caspase-9 and caspase-3. To further identify the molecular mechanism of the WNV capsid protein (WNVCp), yeast two-hybrid assays were employed using WNV-Cp as bait. Jab1, the fifth subunit of the COP9 signalosome, was subsequently identified as a molecule that interacts with WNVCp. Immunoprecipitation and glutathione S-transferase pulldown assays confirmed that direct interaction could occur between WNVCp and Jab1. Immunofluorescence microscopy demonstrated that the overexpressed WNVCp, which localized to the nucleolus, was translocated to the cytoplasm upon its co-expression with Jab1. When treated with leptomycin B, Jab1-facilitated nuclear exclusion of WNVCp was prevented, which indicated that the CRM1 complex is required for Jab1-facilitated nuclear export of WNVCp. Moreover, Jab1 promoted the degradation of WNVCp in a proteasome-dependent way. Consistent with this, WNVCp-mediated cell cycle arrest at the G(2) phase in H1299 was prevented by exogenous Jab1. Finally, an analysis of WNVCp deletion mutants indicated that the first 15 amino acids were required for interaction with Jab1. Furthermore, the double-point mutant of the WNVCp, P5A/P8A, was incapable of binding to Jab1. These results indicate that Jab1 has a potential protective effect against pathogenic WNVCp and might provide a novel target site for the treatment of disease caused by WNV. 相似文献
16.
Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed. 相似文献
17.
Stability and morphology comparisons of self-assembled virus-like particles from wild-type and mutant human hepatitis B virus capsid proteins
下载免费PDF全文

Instead of displaying the wild-type selective export of virions containing mature genomes, human hepatitis B virus (HBV) mutant I97L, changing from an isoleucine to a leucine at amino acid 97 of HBV core antigen (HBcAg), lost the high stringency of selectivity in genome maturity during virion export. To understand the structural basis of this so-called "immature secretion" phenomenon, we compared the stability and morphology of self-assembled capsid particles from the wild-type and mutant I97L HBV, in either full-length (HBcAg1-183) or truncated core protein contexts (HBcAg1-149 and HBcAg1-140). Using negative staining and electron microscopy, full-length particles appear as "thick-walled" spherical particles with little interior space, whereas truncated particles appear as "thin-walled" spherical particles with a much larger inner space. We found no significant differences in capsid stability between wild-type and mutant I97L particles under denaturing pH and temperature in either full-length or truncated core protein contexts. In general, HBV capsid particles (HBcAg1-183, HBcAg1-149, and HBcAg1-140) are very robust but will dissociate at pH 2 or 14, at temperatures higher than 75 degrees C, or in 0.1% sodium dodecyl sulfate (SDS). An unexpected upshift banding pattern of the SDS-treated full-length particles during agarose gel electrophoresis is most likely caused by disulfide bonding of the last cysteine of HBcAg. HBV capsids are known to exist in natural infection as dimorphic T=3 or T=4 icosahedral particles. No difference in the ratio between T=3 (78%) and T=4 particles (20.3%) are found between wild-type HBV and mutant I97L in the context of HBcAg1-140. In addition, we found no difference in capsid stability between T=3 and T=4 particles successfully separated by using a novel agarose gel electrophoresis procedure. 相似文献
18.
A theoretical model successfully identifies features of hepatitis B virus capsid assembly. 总被引:7,自引:0,他引:7
The capsids of most spherical viruses are icosahedral, an arrangement of multiples of 60 subunits. Though it is a salient point in the life cycle of any virus, the physical chemistry of virus capsid assembly is poorly understood. We have developed general models of capsid assembly that describe the process in terms of a cascade of low order association reactions. The models predict sigmoidal assembly kinetics, where intermediates approach a low steady state concentration for the greater part of the reaction. Features of the overall reaction can be identified on the basis of the concentration dependence of assembly. In simulations, and on the basis of our understanding of the models, we find that nucleus size and the order of subsequent "elongation" reactions are reflected in the concentration dependence of the extent of the reaction and the rate of the fast phase, respectively. The reaction kinetics deduced for our models of virus assembly can be related to the assembly of any "spherical" polymer. Using light scattering and size exclusion chromatography, we observed polymerization of assembly domain dimers of hepatitis B virus (HBV) capsid protein. Empty capsids assemble at a rate that is a function of protein concentration and ionic strength. The kinetics of capsid formation were sigmoidal, where the rate of the fast phase had second-power concentration dependence. The extent of assembly had third-power concentration dependence. Simulations based on the models recapitulated the concentration dependences observed for HBV capsid assembly. These results strongly suggest that in vitro HBV assembly is nucleated by a trimer of dimers and proceeds by the addition of individual dimeric subunits. On the basis of this mechanism, we suggest that HBV capsid assembly could be an important target for antiviral therapeutics. 相似文献
19.
Linda Wittkop Alexandra Schwarz Aurelia Cassany Stefanie Grün‐Bernhard Mildred Delaleau Birgit Rabe Christian Cazenave Wolfram Gerlich Dieter Glebe Michael Kann 《Cellular microbiology》2010,12(7):962-975
Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Cα, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle. 相似文献
20.
A model for the hepatitis B virus core protein: prediction of antigenic sites and relationship to RNA virus capsid proteins. 总被引:15,自引:1,他引:15
下载免费PDF全文

The sequences of the core proteins from several serotypes of human hepatitis B virus and related mammalian and avian hepadnaviruses are aligned with the vp3 capsid protein of mengo virus, a picornavirus. The homology indicates an eight-stranded antiparallel beta-barrel fold for the hepatitis protein, as observed in the tertiary structure of the picornavirus protein. The locations of known antigenic sites and other modifications are consistent with this structure for the core protein. The predicted folding suggests additional exposed antigenic sites and supports an evolutionary relationship between this family of enveloped DNA viruses and enveloped and non-enveloped RNA viruses. 相似文献