首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo chlorophyll (Chl) a fluorescence was measured in undisturbed intertidal sediments with the purpose of tracing the vertical migratory rhythms of benthic microalgae. A pulse amplitude fluorometer, an instrument which does not require physical contact with the sample, was used, thus allowing successive measurements to be taken on the same sample without causing any type of disturbance to the sediment structure. The basis of the method is the possibility to detect changes in the Chl a concentration near the sediment surface caused by the vertical movement of the microalgae. This requires the verification of two conditions: the possibility to follow changes in the sediment Chl a content from fluorescence intensity, and a sediment photic depth smaller than the vertical distances covered by the moving microalgae. Both conditions were experimentally verified in intertidal muddy sediments of the Tagus estuary, Portugal. In vivo fluorescence was shown to vary linearly with the sediment Chl a content, and the sediment photic depth was estimated to reach 0.27 mm, a value clearly smaller than the reported depths for microalgal migrations. Sediment samples kept under in situ conditions exhibited large hourly Variations (over 400%) in the Chl a fluorescence intensity, which were closely synchronized with the daytime periods of emersion. The rhythmic fluctuations in Chl a fluorescence were confirmed further to represent microalgal migration by (1) its endogenous nature (fluorescence continued to follow diurnal and tidal cycles after removal of environmental stimuli), (2) its dependence on the vertical distribution of the microalgal population within the sediment (vertically homogenized samples failed to display fluorescence variations), and (3) the lack of significant temperature and light effects on the fluorescence emission under in situ conditions (tested in three species representative of the main groups found in the studied microphytobenthic communities—the diatom Phaeodactylum tricornutum (Böhlin), the cyanobacterium Spirulina maxima (Setch. et Gard.), and the euglenophyte Euglena granulata (Klebs) Lemm.). The results obtained indicate that, in spite of the potential concurrent effects of factors other than the Chl a concentration on the fluorescence intensity, in vivo Chl a fluorescence can be used to trace nondestructively the migratory behavior of benthic microalgae.  相似文献   

2.
A. Ierna 《Photosynthetica》2007,45(4):568-575
Field experiments were conducted in Sicily (south Italy) during two seasons to characterize by chlorophyll (Chl) fluorescence four genotypes (Spunta, Sieglinde, Daytona, and Ninfa) of potato (Solanum tuberosum L.) for off-season production during plant aging and to analyse the possible relation between Chl parameters and tuber yield. Chl fluorescence parameters [initial fluorescence (F0), maximum fluorescence (Fm), Fv/Fm, time in which maximal fluorescence occurs (Tmax)] gained from Kautsky kinetics and Chl content were measured weekly, from 5th to 6th leaf appearance to beginning of plant senescence in the first season and to full plant senescence in the second season. F0 and Fv/Fm were the most reliable Chl fluorescence parameters for the definition of genotypic differences while Chl content and Tmax were the most reliable Chl parameters to predict plant aging. Tuber yield was highly correlated with Chl content, Tmax, F0, and Fm.  相似文献   

3.
The effects of submergence on chlorophyll (Chl) a fluorescence were compared in seven Oryza sativa (L.) cultivars, namely FR 13A, Khoda, Khadara, Kalaputia (tolerant), Sabita, and Hatipanjari (avoiding type), and IR 42 (susceptible). Seedlings were submerged for 4 d under complete darkness. Oxygen concentration of flood water decreased with the period of submergence with concomitant increase in concentration of carbon dioxide. Submergence caused diminution in the amount of total Chl. Genotypic differences were observed for Chl content and survival percentage. Quantification of the Chl a fluorescence transients (JIP-test) revealed large cultivar differences in the response of photosystem 2 (PS2) to submergence. The kinetics of Chl a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by submergence. The selective suppression of the J-I phase of fluorescence especially after 2 d of submergence provided evidence for weakened electron donation from the oxygen evolving complex whereas under severe submergence stress (4 d) both O-J and J-I steps were suppressed greatly with highly suppressed P-step, which resulted in lowering of variable fluorescence. Grouping probability or energetic connectivity between PS2 obtained through JIP-test from the data after 2 d of submergence showed a direct relation with survival percentage, i.e. fluorescence measurements contained the information of the survival chance of a plant under submerged conditions. The information could be used in identifying the submergence tolerant cultivars when the damage is not very severe.  相似文献   

4.
Field experiments were conducted in Sicily (south Italy) to assess chlorophyll (Chl) fluorescence parameters in response of potato crop to nitrogen dose, to variation in genotype and in plant age, and to detect relationships between Chl content, fluorescence parameter Fv/Fm, and tuber yield. The experiment included five nitrogen doses (0, 10, 20, 30, and 40 g m−2) and four genotypes (Spunta, Sieglinde, Daytona, and Igea). Chl fluorescence parameters (initial fluorescence, F0, maximum fluorescence, Fm, variable fluorescence, Fv, Fv/Fm, Tmax (the time required to reach Fm), and Chl content were measured weekly between the appearance of the fifth and sixth leaves and the onset of plant senescence. A positive linear relationship was established between nitrogen supply and Chl content, F0, and Tmax. Nitrogen supply up to 10 g m−2 also had a positive effect on Fm and Fv, but above this rate it reduced Fv/Fm. Spunta had the highest Chl content, Fm, Fv, and Fv/Fm, but the lowest F0, whereas Sieglinde had the lowest Chl content, Fv, Fv/Fm, and Tmax and the highest F0. The cvs. Igea and Daytona exhibited intermediate Chl fluorescence parameters. Chl content and Tmax decreased with increasing plant age, whereas F0, Fm, and Fv increased until complete canopy development and thereafter declined until crop maturity. Tuber and plant dry matter yield were significantly correlated with Chl content, F0, and Tmax. Thus Chl fluorescence and content detect differences in the response of potato to N supply, can discriminate between genotypes, predict plant age, and yield performance under field conditions.  相似文献   

5.
In etiolated pea and maize leaves illuminated after incubation at 38 degreesC, a new dark reaction was shown manifested in the bathochromic shift of spectral bands and accompanied by esterification of the product of protochlorophyllide photochemical reduction--Chld 684/676: Chld 684/676 --> Chl 688/680. After completion of the reaction a rapid (20-30 sec) quenching of the fluorescence of the reaction product (Chl 688/680) was observed. The reaction Chld 684/676 --> Chl 688/680 is inhibited under anaerobic conditions and in the presence of cyanide; the reaction accompanied by Chl 688/680 fluorescence quenching is not observed in pea mutants with impaired function of photosystem II reaction centers. The spectral properties of the formed Chl form with the absorption maximum at 680 nm, fluorescence quenching, and simultaneous synthesis of pheophytin suggest that the reaction is connected with the chlorophyll of photosystem II reaction center--P-680.  相似文献   

6.
M Chen  Y Li  D Birch  RD Willows 《FEBS letters》2012,586(19):3249-3254
A Chl f-containing filamentous cyanobacterium was purified from stromatolites and named as Halomicronema hongdechloris gen., sp. nov. after its phylogenetic classification and the morphological characteristics. Hongdechloris contains four main carotenoids and two chlorophylls, a and f. The ratio of Chl f to Chl a is reversibly changed from 1:8 under red light to an undetectable level of Chl f under white-light culture conditions. Phycobiliproteins were induced under white light growth conditions. A fluorescence emission peak of 748 nm was identified as due to Chl f. The results suggest that Chl f is a red-light inducible chlorophyll.  相似文献   

7.
Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F6851F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.  相似文献   

8.
Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of microseconds, respectively, are responsible for initial light-induced fluorescence quenching via singlet-triplet annihilation. In addition, at times ranging from milliseconds to seconds, a slow decay of the light-induced fluorescence quenching can be observed, indicating the presence of additional quenchers generated by the laser. The generation of the quenchers is found to be sensitive to the presence of oxygen. It is proposed that long-lived fluorescence quenchers can be generated from Chl triplets that are not transferred to Car molecules. The quenchers could be Chl cations or other radicals that are produced directly from Chl triplets or via Chl triplet-sensitized singlet oxygen. Decay of the quenchers takes place on a millisecond to second time scale. The decay is slowed by a few orders of magnitude at 77 K indicating that structural changes or migration-limited processes are involved in the recovery. Fluorescence quenching is not observed for trimers, which is explained by a reduction of the quenching domain size compared to that of aggregates. This type of fluorescence quenching can operate under very high light intensities when Chl triplets start to accumulate in the light-harvesting antenna.  相似文献   

9.
We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F(o)) of Chl fluorescence was higher than in the wild type. F(o) was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.  相似文献   

10.
Field experiments for evaluating heat tolerance-related physiological traits were conducted for two consecutive years using a mapping population of recombinant inbred lines (RILs) from the cross RAJ4014/WH730. Chlorophyll content (Chl) and chlorophyll fluorescence (CFL) were recorded under timely sown (TS) and late sown (LS) conditions. Late sowing exposes the terminal stage of plants to high temperature stress. Pooled analysis showed that CFL and Chl differed significantly under TS and LS conditions. The mean value of CFL (Fv/Fm) and Chl under both timely and late sown conditions were used as physiological traits for association with markers. Regression analysis revealed significant association of microsatellite markers viz., Xpsp3094 and Xgwm131 with coefficients of determination (R2) values for CFL (Fv/Fm) and Chl as 12 and 8 %, respectively. The correlation between thousand grain weight (TGW) with Chl and CFL were 14 and 7 % and correlation between grain wt./spike with Chl and CFL were 15 and 8 %, respectively. The genotypes showing tolerance to terminal heat stress as manifested by low heat susceptibility index (HSI = 0.43) for thousand grain weight, were also found having very low Chl, HSI (−0.52). These results suggest that these physiological traits may be used as a secondary character for screening heat-tolerant genotypes.  相似文献   

11.
The induction kinetic of the chlorophyll (Chl) fluorescence and the Fv/Fm ratio have been tested in order to find out the suitability of this technique to evaluate damage caused by salinity in plants of Rosa hybrida cv. Ilseta grafted on R. manetti growing in a greenhouse under non-saturating irradiance. Under these conditions salinity induced changes in plants morphology, nutrient and Chl contents and in the gas exchange parameters, but not in the Fv/Fm ratio. The Rfd index did not reveal more information. The Fv/Fm ratio as well as the fluorescence induction curves were more affected by salinity when an irradiation stress was added, therefore as an indicator of salt stress in roses, Chl fluorescence is of limited use when the plants are grown without additional stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.

Background and aims

Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency.

Methods

Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII) proteins and mineral elements.

Results

Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient plants were accompanied by a marked reduction of the D1 protein in PSII. Foliar Mn application fully restored PSII functionality, ensured winter survival, and increased grain yields under field conditions.

Conclusions

The efficiency and stability of PSII are markedly affected by latent Mn deficiency. Chlorophyll a fluorescence measurements constitute a powerful and valuable tool for diagnosis and remediation of latent Mn deficiency.  相似文献   

13.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

14.
Excitation energy distribution in Porphyridium cruentum in state 1 and state 2 was investigated by time resolved 77 K fluorescence emission spectroscopy. The fluorescence rise times of phycoerythrin, phycocyanin and allophycocyanin (in cells in state 1 and state 2) were very similar in contrast to the emission from chlorophyll a (Chl a) associated with the two photosystems. In state 2 photosystem II (PSII) Chl a fluorescence emission rose faster than the PSI Chl a emission and decayed more rapidly, and the converse was observed in state 1. These kinetic data support the concept of increased energy transfer from PSII Chl a to PSI Chl a in state 2 in P. cruentum.Abbreviations APC allophycocyanin - Chl a chlorophyll a - PSII photosystem II - PC phycocyanin - PE phycoerythrin  相似文献   

15.
Roháček  K.  Barták  M. 《Photosynthetica》1999,37(3):339-363
The review summarizes basic information about slow and fast chlorophyll (Chl) a fluorescence induction kinetics (FIK) recorded using fluorimeters working on a principle of the pulse amplitude modulation (PAM) of a Chl fluorescence signal. It explains fundamental principles of the measuring technique, evaluates the terminology, symbols, and parameters used. Analysis of Chl FIK resulting in a set of Chl fluorescence parameters (FPs) provides qualitative and quantitative information about photosynthetic processes in chloroplasts. Using FPs, one can describe the functioning of the photosynthetic apparatus under different internal and external conditions. Brief comments on proper application of the fluorimetric method in photosynthesis research and some actual examples are also given. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Nedbal  L.  Soukupová  J.  Whitmarsh  J.  Trtílek  M. 《Photosynthetica》2000,38(4):571-579
We demonstrate the feasibility of assaying and predicting post-harvest damage in lemons by monitoring chlorophyll (Chl) fluorescence. Fruit quality was assayed using a commercial instrument that determines photosynthetic performance by imaging Chl fluorescence parameters under different irradiances. Images of Chl fluorescence from individual lemons reveal that photosynthesis is active throughout the post-harvest ripening process. Because photosynthesis is highly sensitive to biotic and abiotic stress, variations in Chl fluorescence parameters over the surface of a lemon fruit can be used to predict areas that will eventually exhibit visible damage. The technique is able to distinguish between mould-infected areas that eventually spread over the surface of the fruit, and damaged areas that do not increase in size during ripening. This study demonstrates the potential for using rapid imaging of Chl fluorescence in post-harvest fruit to develop an automated device that can identify and remove poor quality fruit long before visible damage appears.  相似文献   

17.
Gielen  B.  Jach  M.E.  Ceulemans  R. 《Photosynthetica》2000,38(1):13-21
Six-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open top chambers (OTCs) at ambient (AC) or elevated (ambient + 400 µmol mol–1; EC) CO2 concentration for three years (1996–1998). Chlorophyll (Chl) a fluorescence of current and one-year-old needles was measured in the field at two-weekly intervals in the period July–October 1998. In addition, Chl, carbon (C), and nitrogen (N) concentrations in both needle age classes were determined monthly during the same period. Chl fluorescence parameters were not significantly affected by EC, suggesting there was no response of the light reactions and the photochemical efficiency of photosystem 2. Chl concentrations were not significantly different but a reduced N concentration was observed in needles of EC treatment. Significant differences between needle age classes were observed for all parameters, but were most apparent under EC and toward the end of the growing season, possibly due to an acclimation process. As a result, significant interactions between CO2 treatment, needle age class, and season were found. This study emphasizes the importance of repeated measures including different leaf/needle age classes to assess the photosynthetic response of trees under EC.  相似文献   

18.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

19.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm− 1. In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号