首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 于雾凉季测定了叶片叶绿素荧光参数,探讨了4~6 ℃夜间低温对4种相对光强下生长的两种西双版纳沟谷雨林树苗光系统Ⅱ(PSⅡ)活性的影响及雾对植物的可能保护机制。随夜间低温处理时间延长,不同光强下生长的团花树(Anthocephalus chinensis)和玉蕊(Barringtonia macrostachya)叶片日间和长期光抑制,以及PSⅡ反应中心的可逆失活或破坏加剧,生长环境光越强夜间低温的效应越明显,弱光下其效应不显著。间接表明雾使光强减弱利于缓解自然夜温降低对本区热带植物的影响。中光强下玉蕊对照植株发生了胁迫诱导的光抑制;相同处理条件下玉蕊的光抑制程度均比团花树重,表明玉蕊对夜间低温引起的光抑制更敏感。夜间低温处理后,中等和低光强下团花树的热耗散多于玉蕊,表明其光保护作用较强。夜间低温处理期间两种植物的光抑制与热耗散增多和PSⅡ反应中心的可逆失活或破坏的加剧有关。  相似文献   

2.
采用低温恒温槽处理离体叶片后测定其电解质外渗率,并结合Logistic方程得出低温半致死温度的方法,评价农业部景洪橡胶树种质资源圃中的30个橡胶树品种的抗寒性。结果表明,品种‘RRIM712’、‘云研80-1983’、‘云研77-4’、‘PR107’、‘RRIM524’抗寒性强,低温半致死温度在-4~0℃之间;品种‘云研76-398’、‘RRIM523’抗寒性弱,低温半致死温度在4~7℃之间;其他品种抗寒性居中。橡胶树在低温胁迫下,超氧阴离子的产生速率与橡胶树的抗寒性无直接关系,但不同温度下的变化幅度越小,抗寒性越高;SOD活性随温度降低迅速提高,CAT随温度降低表现出活性降低的趋势。  相似文献   

3.
We investigated the physiological effect of night chilling (CN) on potted seedlings of two tropical tree species, Calophyllum polyanthum and Linociera insignis, in Xishuangbanna, southwest China. Seedlings grown under 8, 25, and 50 % daylight for five months were moved to a 4–6 °C cold storage house for three consecutive nights, and returned to the original shaded sites during the day. CN resulted in strong suppression of photosynthesis and stomatal conductance for L. insignis, and reduced photorespiration rates, carboxylation efficiency, and maximum photochemical efficiency of photosystem 2 (PS2) at dawn and midday for both species. CN increased dawn and midday rates of non-photochemical quenching, and the contents of malondialdehyde and H2O2 for both species. CN also induced inactivation or destruction of PS2 reaction centres. The impacts of CN on tropical seedlings increased with the number of CN. Shading could significantly mitigate the adverse effects of CN for both species. After 3-d-recovery, gas exchange and fluorescence parameters for both species returned to pre-treatment levels in most cases. Thus CN induced mainly stomatal limitation of photosynthesis for L. insignis, and non-stomatal limitation for C. polyanthum. C. polyanthum was more susceptible to CN than L. insignis. Fog, which often occurs in Xishuangbanna, could be beneficial to chilling sensitive tropical seedlings in this area through alleviating photoinhibition or photodamage by reducing sunlight.  相似文献   

4.
Cold tolerance of cucumber (Cucumis sativus L.) seedlings was investigated using wild-type plants and the phytochrome B-deficient mutant (lh-mutant). Plants were subjected for 6 days to intermittent short-term cooling (12°C for 2 h per day) and to continuous chilling under conditions of 16-h photoperiod (day/night = 16/8 h) and permanent illumination. “Dehardening” process was initiated by the transfer of plants to either light or dark conditions at 23°C. It was concluded that phytochrome B participates in the development of cold tolerance in cucumber plants under stress conditions, i.e., under short-term intermittent chilling at nights and during dehardening in continuous darkness.  相似文献   

5.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

6.
研究了夜间低温对两个芒果(Mangifera indica)品种翡翠芒(Khieo Sawoei)和四季芒(Choke Anand)光合生理的影响.两个芒果品种的幼茼盆栽于全光和50%相对光强下一年.在第二年的冬季,连续7天晚上将芒果幼苗移到4℃的冷库中,白大保持原条件.于低温处理前、处理期间和结束低温处理后10天中测定芒果幼苗的光合生理特征.结果表明,夜间低温导致两个芒果品种的净光合速率、气孔导度和光系统Ⅱ的最大光化学效率(Fv/Fm)降低、非光化学猝灭(NPQ)上升.夜间低温对生长在全光下的芒果幼苗光合作用的抑制比50%光下的更重.翡翠芒的Fv/Fm比四季芒下降的更多,但后者的NPQ上升更多.夜间低温还导致两种光下芒果幼苗叶片的叶绿素含量下降,类胡萝卜素/叶绿素比值、丙二醛含量、膜的透性和可溶性化合物(可溶性总糖和脯氨酸)上升.解除低温胁迫后,四季芒Fv/Fm的恢复比翡翠芒的快.解除低温胁迫7天后二者的F发、Fv/Fm能完全恢复.上述结果表明,翡翠芒对低温更敏感,遮荫可以明显缓解两个芒果品种低温引起的光抑制.  相似文献   

7.
Abstract. Comparisons were made between the changes in mRNA levels induced by low night temperatures in the cold–sensitive tomato and two altitudinal ecotypes of the wild species L. hirsutum. Changes in mRNA levels were detected by resolving in vitro translation products of poly(A)+ RNA by 2-D PAGE. The treatment was applied by first growing plants in a thermoperiod of 25/18°C and then switching to 25/6°C. All tomatoes displayed a diurnal cycling in which a set of mRNAs accumulated at the end of the 18°C nights, whereas another accumulated at the end of the 25°C days. The accumulation of night specific mRNAs was inhibited by 6°C nights in the cold sensitive tomatoes while that of the tolerant one was only marginally affected. All tomatoes showed a similar reduction in the apparent turnover rate of the day specific mRNAs during the 6°C nights. Finally, low night temperatures induced the accumulation of six to eight mRNAs in all genotypes. This number increased by 15 in L. esculentum after the seventh night and are likely involved in stress response rather than acclimation/tolerance. The tomato is proposed as a genetic model to discriminate genes involved in acclimation/tolerance from those involved in stress response.  相似文献   

8.
生长光强对六个橡胶树品种幼苗光合特性的影响   总被引:1,自引:0,他引:1  
研究了6个橡胶树品种幼苗(适应1年后)在不同生长光强(100%、50%、25%和5%自然光)下的叶片光合系统对光强和CO2浓度的响应特性。结果表明,6个橡胶树品种对不同的光环境均表现出较强的适应性。在不同生长光强下,橡胶树幼苗叶片的最大光合速率(Pmax)、光补偿点(LCP)、暗呼吸速率(Rd)、磷酸丙糖利用速率(TPU)、最大羧化速率(Vcmax)和最大电子传递速率(Jmax)以及叶绿素含量(Chl)均有显著差异(P<0.05),而光饱和点(LSP)和AQY(表观量子效率)则无显著差异。相同生长光强下,6个橡胶树品种间叶片的最大光合速率(Pmax)、暗呼吸速率(Rd)、磷酸丙糖利用速率(TPU)、最大电子传递速率(Jmax)和叶绿素含量(Chl)有显著差异(P<0.05),其光补偿点(LCP)、最大羧化速率(Vcmax)和表观量子效率(AQY)则无显著差异。综合比较各参数,RRIM600、云研77-4和PR107适宜于相对光强为100%~50%的植胶环境,而云研77-2、GT1和热研523适宜于相对光强为50%~25%的植胶环境。  相似文献   

9.
Experiments performed under controlled conditions showed that level of PPFD (photosynthetic photon flux density) during early seedlings growth (preceding cold acclimation at +2 °C) was not the key factor for the development of frost resistance. It did not modify the beneficial effects of prehardening (Rapacz 1997, in this issue) at moderately low (+12 °C) day temperature. Now I have shown that the increase of PPFD may replace to some extent prehardening in the development of frost resistance. It was particularly seen in non-prehardened plants, which had been grown under warm-day (+20 °C) conditions. Prehardening performed under controlled conditions, as well as seedlings growth under natural autumn conditions in the field, allowed to maintain a high net-photosynthesis rate at chilling temperatures. A net-photosynthesis rate during cold acclimation at +2 °C corresponded well with higher frost resistance. As a result, seedlings non subjected to prehardening and grown before cold acclimation under low PPFD acclimated better, if the cold treatment was applied only at nights (+20/2 °C day/night). Only under such conditions the photosynthetic rate was sufficiently high to allow plants to reach a higher level of frost resistance. All other plants acclimated better when they were exposed to the hardening temperature continuously during days and nights (+2/2 °C day/night).  相似文献   

10.
Lowland tropical forests once covered a large fraction of tropical southern China, but currently have an extent of ca 633,800 ha, mostly in Xishuangbanna of southern Yunnan. The Xishuangbanna region has a typical monsoon climate with a mean annual temperature ranging between 15.1°C and 21.7°C, and precipitation between 1200 and 2500 mm. There is a pronounced dry season between November and April with frequent occurrence of heavy fog. Rainfall during the wet season between May and October accounts for over 80 percent of total annual precipitation. Water deposition from fog accounts for over one‐third of total water input during the dry season in the forests, suggesting an important role that fog may play in pushing up the northern limit of tropical rain forest in Southeast Asia.  相似文献   

11.
Throughout the wheat‐growing regions of Australia, chilling temperatures below 2 °C occur periodically on consecutive nights during the period of floral development in spring wheat (Triticum aestivum L.). In this study, wheat plants showed significant reductions in fertility when exposed to prolonged chilling temperatures in controlled environment experiments. Among the cultivars tested, the Australian cultivars Kite and Hartog had among the lowest levels of seed set due to chilling and their responses were investigated further. The developmental stage at exposure, the chilling temperature and length of exposure all influenced the level of sterility. The early period of booting, and specifically the +4 cm auricle distance class, was the most sensitive and corresponded to meiosis within the anthers. The response of microtubules to chilling during meiosis in Hartog was monitored, but there was little difference between chilled and control plants. Other abnormalities, such as plasmolysis and cytomixis increased in frequency, were associated with death of developing pollen cells, and could contribute to loss of fertility. The potential for an above‐zero chilling sensitivity in Australian spring wheat varieties could have implications for exploring the tolerance of wheat flower development to chilling and freezing conditions in the field.  相似文献   

12.
Tan D  Sun X  Zhang J 《Plant cell reports》2011,30(6):1117-1124
Laticifers are highly specialized cells present in over 20 plant families. They are well defined in planta. In vitro development of laticifers was also observed in some plants, but uncertain in the callus cultures of rubber tree, one of the most economically important latex producing plants. In the present study, we provide evidence that laticifer cells present in the callus cultures of rubber tree by histochemical and immunohistochemical studies. They present in the callus mainly as separate non-elongated form, a novel morphology different from the morphology of laticifer cells in planta, excluding their origin from explants. The occurring frequency of laticifer cells in the callus was genotype-dependent and negatively correlated with the somatic embryogenetic ability, suggesting that the presence of laticifer cells in the callus inhibit somatic embryogenesis in tissue culture of rubber tree. The genotypes PR107, RRIM600, Reyan8-79, and Reyan7-33-97 with lower embryogenetic ability compared to Haiken 2 had more laticifer cells, and laticifer clusters were only observed in these genotypes.  相似文献   

13.
Abstract.
  • 1 In Drosophila melanogaster, the cold-shock tolerance of adult flies at -7°C increased 22% after a prior 2h exposure to 4°C as measured by LD50, the dose (degree minutes of exposure to subzero temperature) which resulted in 50% mortality.
  • 2 Cold-shock tolerance was further significantly increased by selecting cold resistant lines by exposure of adults (1) to 4°C for 2 h (short-term chilling), or (2) to -7°C for 80–120 min (cold shock), or (3) to short-term chilling followed by cold-shock.
  • 3 After ten generations of selection, the greatest increase in cold-shock tolerance was found in flies selected using the combined exposure of short-term chilling and cold shock. LD50s increased 33% in comparison with the unselected control strain when no chilling pre-treatment was given prior to cold shock at -7°C.
  • 4 The rapid cold-hardening response increased 82% in the line selected by the short-term chilling and cold-shock regime.
  • 5 The enhanced cold-shock tolerance was relatively stable since no decrease was observed after four generations without selection.
  • 6 This report shows the role of short-term adaptation as well as selection in the capacity to survive low temperatures in non-diapausing stages of insects.
  相似文献   

14.
This study was carried out to determine the effect of chilling on both cold-acclimated and non-acclimated chickpea (Cicer arietinum L.) cultivars (Gökçe and Can?tez 87). Chickpea seedlings grown in soil culture for 12 days were subjected to chilling temperatures (2 and 4°C for 12 days) after maintaining in cold-acclimation (10°C, 7 days) or non-acclimation (25°C, 7 days) periods. The lowest values of growth parameters were obtained with cold-acclimated plants, whereas non-acclimated plants exhibited the lowest water content values, especially at 2°C. There was no effect of cold-acclimation period on chlorophyll fluorescence parameters. Plants subjected to chilling temperatures after cold-acclimation were more tolerant with respect to chlorophyll fluorescence parameters, and Gökçe had better photosystem II (PSII) photochemical activity. In the chilling treatments, total chlorophyll (a + b) content reduced, especially at 2°C, while anthocyanin and flavonoid contents increased to a greater extent in Gökçe and carotenoid content of the cultivars did not change. Malondialdehyde (MDA) content was higher for Can?tez 87, mostly at 2°C, while proline accumulation was greater for Gökçe. The cold-acclimation period led to a remarkable increase in antioxidant enzyme activities of both cultivars. The superoxide dismutase (SOD) activity was much higher in Gökçe for both chilling temperatures and the ascorbate peroxidase (APX) activity increased only in the cold-acclimated 4°C treatments. Similarly, with APX activity, the glutathione reductase (GR) and peroxidase (POD) activities of cultivars were higher in cold-acclimated plants at both the chilling temperatures, mostly in Gökçe. The results of this study indicate that cold-acclimation increased the cultivars ability to withstand the chilling temperatures. The lower MDA content and higher antioxidant and photochemical activities in Gökçe indicated an enhanced chilling tolerance capacity of this cultivar to protect the plant from oxidative damage.  相似文献   

15.
Dallis grass (Paspalum dilatatum Poir.) is a C4/NADP‐ME gramineae, previously classified as semi‐tolerant to cold, although a complete study on this species acclimation process under a long‐term chilling and controlled environmental conditions has never been conducted. In the present work, plants of the variety Raki maintained at 25/18°C (day/night) (control) were compared with plants under a long‐term chilling at 10/8°C (day/night) (cold‐acclimated) in order to investigate how growth and carbon assimilation mechanisms are engaged in P. dilatatum chilling tolerance. Although whole plant mean relative growth rate (mean RGR) and leaf growth were significantly decreased by cold exposure, chilling did not impair plant development nor favour the investment in biomass below ground. Cold‐acclimated P. dilatatum cv. Raki had a lower leaf chlorophyll content, but a higher photosynthetic capacity at optimal temperatures, its range being shifted to lower values. Associated with this higher capacity to use the reducing power in CO2 assimilation, cold‐acclimated plants further showed a higher capacity to oxidize the primary stable quinone electron acceptor of PSII, QA. The activity and activation of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were not significantly affected by the long‐term chilling. Cold‐acclimated P. dilatatum cv. Raki apparently showed a lower transfer of excitation energy from the light‐harvesting complex of photosystem II to the respective reaction centre and enhancement of radiationless energy‐dissipating mechanisms at suboptimal temperatures. Overall, long‐term chilling resulted in several effects that comprise responses with an intermediate character of both chilling‐tolerant and –sensitive plants, which seem to play a significant role in the survival and acclimation of P. dilatatum cv. Raki at low temperature.  相似文献   

16.
17.
西双版纳热带雨林和哀牢山亚热带常绿阔叶林雾特征研究   总被引:2,自引:0,他引:2  
张晶  宋清海  张一平  邓云  武传胜 《生态学报》2018,38(24):8758-8765
以西双版纳热带雨林和哀牢山亚热带常绿阔叶林为研究对象,利用PWS100天气现象仪获取两种森林类型的能见度数据。基于2014年西双版纳热带雨林和哀牢山亚热带常绿阔叶林的能见度数据,对两种森林类型雾的特征进行定量研究。研究结果表明:(1)西双版纳热带雨林全年雾日数为196 d,占全年的53.7%,哀牢山亚热带常绿阔叶林全年雾日数为100 d,占全年的27.4%,热带雨林全年雾日数几乎为亚热带常绿阔叶林雾日数的两倍;(2)热带雨林雨季和干季各占28.06%和71.94%,而亚热带常绿阔叶林雨季和干季各占72%和28%;(3)热带雨林一日内雾持续的最长时间为10.5 h,而亚热带常绿阔叶林雾生成和消散时间不定,一日内雾最长持续时间可达24 h,但雾发生的频率低于西双版纳热带雨林。两种森林类型全年雾日特征有明显的差异性,通过定量评价地处过渡带上的两种多雾森林生态系统雾特征,可为未来气候变化对不同森林生态系统碳水交换影响提供数据支撑。  相似文献   

18.
Although commercial sugarcane (Saccharum spp. hybrid) produces large biomass yields, its lack of cold tolerance limits its cultivation to the tropics and subtropics. In contrast, sugarcane's close relative, Miscanthus, tolerates low temperatures. We studied 18 miscane genotypes, derived from hybridizations between two genotypes of sugarcane and two genotypes of Miscanthus (one each of M. sinensis and M. sacchariflorus). In an initial greenhouse experiment on long‐duration chilling stress (12–13°C day/7–9°C night), photosynthetic rates of the Miscanthus parents were significantly higher than the sugarcane parents after 7 days of chilling and were more than double by 14 days. The Miscanthus also retained more of their prechilling (22–25°C day/13–15°C night) photosynthetic rates (68%–72% 7 days, 64%–66% 14 days) than the sugarcanes (27% 7 days, 19%–20% 14 days). Seven of 18 miscanes exhibited higher photosynthetic rates than their sugarcane parents after 7 days of chilling, whereas after 14 days only four miscane genotypes had significantly higher photosynthetic rates than their sugarcane parents, but notably two of these did not differ from their highly tolerant Miscanthus parents. In a subsequent growth chamber experiment to evaluate short‐duration chilling stress and postchilling recovery, three miscanes representing the range of responses observed in the greenhouse experiment were compared with their parents. After 4 days of chilling (12/7°C day/night), the miscanes retained between 45% and 60% of their prechilling photosynthetic rate, with the best entry not significantly different from its Miscanthus parent (66%), and all three miscanes performed significantly better than the sugarcane parents (32%–33% for sugarcanes). After 7 days of postchilling recovery (26/18°C day/night), the Miscanthus parents and two of the miscanes fully recovered their prechilling photosynthetic rates but the sugarcane parents only recovered 69%–73% of their prechilling rates. Thus, genes from Miscanthus can be used to improve chilling tolerance of sugarcane via introgression.  相似文献   

19.
This paper is a continuation of our studies related to the response of two tomato cultivars: Robin and New Yorker to chilling: the later is more tolerant to chilling than the former one (Starck et al. 1994). The concentration of ABA in the xylem sap and ABA delivery rate (calculated as the amount of ABA exuded in 2h from the cut stump, following shoot removal) were estimated by ELISA. The relative water content (RWC) of the leaf blades and stomatal resistance (RS) were also measured. Tomato plants were grown in a greenhouse, under noncontrolled conditions. Before chilling some of the plants were drought hardened for 10 days (H). As an consequence of water deficit only New Yorker growth slightly decreased. Plants were chilled to 2–5 °C during three consecutive, 16-h nights, preceded by warm days, which caused a decrease in the RWC of leaf blades. Chilling did not decreased leaf blade hydration significantly, but drastically increased the concentration of ABA in the xylem sap in more chilling tolerant cv. New Yorker only. The delivery rate of ABA was markedly enhanced in both cultivars, but much more in New Yorker. Drought hardening increased ABA delivery rate in cv. Robin only, especially after chilling. The lack of correlation between changes in the RWC of leaf blades after low temperature treatment and the concentration of ABA in the xylem sap as well as its delivery rate suggest, that in both tomato cultivars chilling increased ABA level directly, not as an secondery effect of temperature-induced water deficit.  相似文献   

20.
The mechanisms of plant responses to short-term cold treatments applied daily in the period of active growth remain unknown. Cucumber (Cucumis sativus L.) plants were subjected to brief drops of temperature (2 h, 12°C) at the end of each night over a 6-day period (DROP treatment) and to prolonged (6 days) cooling at 12°C (permanent low-temperature treatment, PLT). The plants exposed to cold treatments and control plants grown at 20°C were compared in terms of cold resistance and changes in gene expression. Cold resistance of plants was determined on the basis of LT50 temperature. The response of cucumber genetic machinery was assessed by means of a differential display method based on polymerase chain reaction (PCR). The changes in mRNA pool in cells of cucumber plants subjected to permanent and periodic chilling were assessed after comparing the populations of PCR fragments of cDNA. In both types of chilling protocols, the cold resistance started to increase from the 2nd day of low temperature treatment. At the end of the experiment (on the 6th day), the increment in cold resistance was three times larger for DROP compared to PLT treatment. Analysis of mRNA pool showed that the numbers of amplified fragments were nearly identical in both types of low-temperature treatment. The higher level of cold resistance under DROP conditions was assumed to depend on features of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号