首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The permeability of leaf tissue to water has been reported to increase under illumination, a response reputed to involve aquaporins. We studied this ‘light response’ in red oak (Quercus rubra L.), the species in which the phenomenon was first detected during measurements of leaf hydraulic conductance with the high‐pressure flow meter (HPFM). In our HPFM measurements, we found that pre‐conditioning leaves in darkness was not sufficient to bring them to their minimum conductance, which was attained only after an hour of submersion and pressurization. However, pre‐conditioning leaves under anoxic conditions resulted in an immediate reduction in conductance. Leaves light‐ and dark‐acclimated while on the tree showed no differences in the time course of HPFM measurement under illumination. We also studied the effect of light level and anoxia on rehydration kinetics, finding that anoxia slowed rehydration, but light had no effect either in the lab (rehydration under low light, high humidity) or on the tree (acclimation under high light, 10 min of dark prior to rehydration). We conclude that the declines in conductance observed in the HPFM must involve a resistance downstream of the extracellular air space, and that in red oak the hydraulic conductivity of leaf tissue is insensitive to light.  相似文献   

3.
小麦根系活力变化与叶片衰老的研究   总被引:31,自引:4,他引:31  
对小麦根系活力、叶片叶绿素含量和光合速率变化的田问实验结果表明,根系活力的衰退早且快于叶片叶绿素含量和光合速率的衰退;根系活力和叶片光合速率呈正相关关系(r=0.8006).拔节期追施氮肥,改善根际营养条件后,叶片的光合速率、根系活力明显提高,叶片中ABA含量降低,ZRs升高,SOD活性增加,MDA的高峰期比对照推迟8~10d,说明根系活力变化与地上部叶片的衰老密切相关,改善根际营养,提高生育前期的根系活力有助于延缓地上部分的衰老.  相似文献   

4.
5.
The relation between nitrogen deficiency and leaf senescence   总被引:1,自引:0,他引:1  
Because the "mobilization" of nitrogen resulting from nutritional nitrogen deficiency is also prominent during leaf senescence, the characteristics of these two syndromes were compared. Oat plants ( Avena sativa L. cv. Victory) were raised on a nutrient solution, complete except for nitrogen supply (i.e., with only the seed protein as nitrogen source), and the senescence of their leaves was compared with that of controls grown on a full nutrient solution. The N-deficient plants flowered after forming only 4 leaves and each set a single seed. The nitrogen lack affected the content of chlorophyll somewhat more than the content of the amino acids or protein nitrogen. However, spraying the plants with kinetin solution was able to retain 20–30% of the chlorophyll and protein. During senescence, the chlorophyll appears to be less stable in the N-deficient leaves than in the controls, while the protein is somewhat more stable than in the controls. Also, when the detached leaves from N-deficient plants senesced in white light or in darkness, kinetin delayed their senescence almost as effectively as that of control leaves. Most strikingly, the stomata of N-deficient leaves after detachment and floating on water were largely closed in light, just as in senescence, but could be partially induced to open by kinetin treatment. Since stomatal closure has earlier been shown to cause senescence, the characteristic syndrome of foliar nitrogen deficiency is concluded to be partly that of senescence.  相似文献   

6.
Effects of contrasting temperatures of an expanding leaf (source) and of remaining plant parts (sink) on diurnal export and distribution of carbon were studied in seedlings of Cucumis sativus L., cv. Farbio. The time course of the rate of export was calculated by measuring simultaneously the exchange of 14CO2 and the amount of 14C in the source leaf by means of a Geiger-Müller detector using a steady-state labelling technique. In all treatments average export rate during the night (16 h) was maximally 50% of the average rate during the 8-h day. Temperature affected the diurnal course of export via the source leaf and the sink in different ways. At a source leaf temperature of 25 or 30°C export stopped 12 h after start of the night, whereas at 20°C export continued throughout the night. However, the total amount of carbon exported during a 24 h cycle, expressed as a proportion of the amount of carbon assimilated, was the same at source leaf temperatures of 20 or 30°C. Thus source leaf temperature did not affect the distribution of assimilates between source and sink, in contrast to sink temperature. After 24 h at a sink temperature of 30°C, 20% more 14C was exported to plant parts below the source leaf than with a sink temperature of 20°C, at the expense of carbon remaining in the source. During the day less starch and more structural dry matter was formed at a source leaf temperature of 30°C than at 20°C. After a complete day/night cycle, however, there was no difference between the treatments. Starch was the primary carbon source during the night, and the decline in the rate of export coincided with the depletion of starch. Thus the decline in the rate of export at a source leaf temperature of 25 or 30°C at 12 h after the start of the night was due to the depletion of starch at that time. Similarly, at 20°C export could continue until the end of the night as the starch degradation supplied assimilates during the whole night.  相似文献   

7.

Background and Aims

Research on the ability of plants to recognize kin and modify plant development to ameliorate competition with coexisting relatives is an area of very active current exploration. Empirical evidence, however, is insufficient to provide a sound picture of this phenomenon.

Methods

An experiment was designed to assess multi-trait phenotypic expression in response to competition with conspecifics of varied degrees of genealogical relatedness. Groups of siblings, cousins and strangers of Lupinus angustifolius were set in competition in a pots assay. Several whole-plant and organ-level traits, directly related to competition for above- and below-ground resources, were measured. In addition, group-level root proliferation was measured as a key response trait to relatedness to neighbours, as identified in previous work.

Key Results

No major significant phenotypic differences were found between individuals and groups that could be assigned to the gradient of relatedness used here. This occurred in univariate models, and also when multi-trait interactions were evaluated through multi-group comparisons of Structural Equation Models. Root proliferation was higher in phenotypically more heterogeneous groups, but phenotypic heterogeneity was independent of the relatedness treatments of the experiment, and root proliferation was alike in the neighbourhoods of siblings, cousins and strangers.

Conclusions

In contrast to recent findings in other species, genealogical relatedness to competing neighbours has a negligible impact on the phenotypic expression of individuals and groups of L. angustifolius. This suggests that kin recognition needs further exploration to assess its generality, the ecological scenarios where it might have been favoured or penalized by natural selection, and its preponderance in different plant lineages.  相似文献   

8.
Chromosome replication does not trigger cell division in E. coli   总被引:7,自引:0,他引:7  
R Bernander  K Nordstr?m 《Cell》1990,60(3):365-374
An essential part of the chromosome replication origin of E. coli K-12 and B/r was replaced by the plasmid pOU71. The average initiation mass of replication for pOU71 decreases with increasing temperature. The constructed strains were grown exponentially at different temperatures, and cell sizes and DNA content were measured by flow cytometry. The average DNA content increased with increasing temperature, but the cell size distribution was largely unaffected. Furthermore, cells in which DNA replication had not yet initiated (cells in the B period) became less abundant with increasing temperature. The increased DNA content could not be explained by an increase in the length of the C period. It is concluded that chromosome replication does not trigger cell division in E. coli, but that the chromosome replication and cell division cycles of E. coli run in parallel independently of each other.  相似文献   

9.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

10.
L-Ascorbic acid (AsA) was found to be loaded into phloem of source leaves and transported to sink tissues. When L-[(14)C]AsA was applied to leaves of intact plants of three different species, autoradiographs and HPLC analysis demonstrated that AsA was accumulated into phloem and transported to root tips, shoots, and floral organs, but not to mature leaves. AsA was also directly detected in Arabidopsis sieve tube sap collected from an English green aphid (Sitobion avenae) stylet. Feeding a single leaf of intact Arabidopsis or Medicago sativa with 10 or 20 mM L-galactono-1,4-lactone (GAL-L), the immediate precursor of AsA, lead to a 7- to 8-fold increase in AsA in the treated leaf and a 2- to 3-fold increase of AsA in untreated sink tissues of the same plant. The amount of AsA produced in treated leaves and accumulated in sink tissues was proportional to the amount of GAL-L applied. Studies of the ability of organs to produce AsA from GAL-L showed mature leaves have a 3- to 10-fold higher biosynthetic capacity and much lower AsA turnover rate than sink tissues. The results indicate AsA transporters reside in the phloem, and that AsA translocation is likely required to meet AsA demands of rapidly growing non-photosynthetic tissues. This study also demonstrates that source leaf AsA biosynthesis is limited by substrate availability rather than biosynthetic capacity, and sink AsA levels may be limited to some extent by source production. Phloem translocation of AsA may be one factor regulating sink development because AsA is critical to cell division/growth.  相似文献   

11.
12.
13.
14.
Changes in various nitrogen compounds during senescence of the fourth leaf were studied in two cultivars of spring wheat (Triticum aestivum L.). One of the cultivars (Yecora) was supplied with two N levels; the other (Tauro) was grown with the high N level and pruned above the fourth leaf, whereas the control was left intact. In both cultivars grown with high N supply, net nitrogen export from the fourth leaf did not occur until 35 days after sowing (DAS). Loss of leaf soluble proteins started earlier than that of chlorophylis, and coincided initially with an increase in insoluble protein. In N deficient plants the level of total N, soluble protein, and the activity of nitrate reductase (NRA. EC 1.6.6.1) started to decrease about 5 days earlier, and along with chlorophyll, continued to decrease at a faster rate, than in high N plants. Also, with low N supply, the large subunit (LSU, 58 kDa) of ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) decreased in greater proportion than other soluble proteins, while with high N supply the decrease in Rubisco LSU was similar to that of other soluble proteins. Nitrogen deficiency caused a greater decrease in soluble proteins than in insoluble proteins, and NRA relative to soluble proteins. The faster senescing Tauro cultivar had lower levels of most parameters, especially NRA, soluble protein and, after 35 DAS. Rubisco LSU as a proportion of soluble protein. The decrease in sink strength due to shoot pruning did generally not affect the level of the various nitrogenous compounds until 35 DAS; thereafter the levels of most parameters, especially soluble protein, Rubisco LSU and, at late stages of senescence, insoluble protein, were higher in pruned than in control shoots. Thus, shoot pruning slows down senescence. The 56- and 78-kDa polypeptides increased, rather than decreased, with leaf age; the level of these two polypeptides showed a negative relationship with Rubisco LSU (r = -0.933 and r = -0.758, respectively).  相似文献   

15.
16.
Senescence is a highly regulated process which is under genetic control. In monocarpic plants, the onset of fruit development is the most important factor initiating the senescence process. During senescence, a large fraction of plant nutrients is reallocated away from vegetative tissues into generative tissues. Senescence may therefore be regarded as a highly effective salvage mechanism to save nutrients for the offspring. CO(2) enrichment, besides increasing growth and yield of C(3) plants, has often been shown to accelerate leaf senescence. C(3) plants grown under elevated CO(2) experience alterations in their nutrient relations. In particular their tissue nitrogen concentrations are always lower after exposure to elevated CO(2). We used a monocarpic C(3) crop - spring barley (Hordeum vulgare cv. Alexis) - grown in open-top field chambers to test the effects of CO(2) enrichment on growth and yield, on nitrogen acquisition and redistribution, and on the senescence process in flag leaves, at two applications of nitrogen fertilizer. CO(2) enrichment (650 vs. 366 μmol mol(-1)) caused an increase both in biomass and in grain yield by 38% (average of the two fertilizer applications) which was due to increased tillering. Total nitrogen uptake of the crops was not affected by CO(2) treatment but responded solely to the N supply. Nitrogen concentrations in grains and straw were significantly lower (-33 and -24%) in plants grown at elevated CO(2). Phenological development was not altered by CO(2) until anthesis. However, progress of flag leaf senescence as assessed by chlorophyll content, protein content and content of large and small subunit of RubisCO and of cytochrome b559 was enhanced under elevated CO(2) concentrations by approximately 4 days. We postulate that CO(2) enhanced flag leaf senescence in barley crops by increasing the nitrogen sink capacity of the grains.  相似文献   

17.
Life span of the second leaf of wheat(Triticum aestivum L., cv. Grana) plants was studied from day 8 to day 50 of plant age in a variant with nitrogen (+N) and in a variant in which plant senescence was induced by the omission of nitrogen from the nutrient solution (−N). Seed protein was the sole source of nitrogen for these plants. Specific leaf mass (SLM) in the −N variant, and specific leaf area (SLA), the mass of fresh leaf, soluble protein content and total nitrogen content in the +N variant peaked by day 22 of plant age (that is by day 19 of leaf age). Dry matter content, leaf length and leaf area, and SLM in the +N variant peaked by day 29 of plant age (that is by day 26 of leaf age). The ontogeny of the second leaf in the variant with enhanced senescence was shorter by at least 14 days. Plants from this variant showed typical symptoms of N deficiency, that is yellowing of leaves, tip burn, and lack of tillering. However, the growth and biochemical characters studied did not indicate an earlier onset of the senescence of the second leaf of −N plants. Both +N and −N variants reached their peaks (with the exception of an earlier peak by day 12 in case of total nitrogen content in the −N variant) on the same day of leaf age. Thus the first part of the leaf life span from leaf growth initiation to full expansion was of the same length in both the control and N-def icient plants. The stage of the proper senescence of the second leaf of −N plants was very short; the leaf completely died away within 7 days after senescence onset.  相似文献   

18.
Ten-year-old field-grown Quercus pubescens Willd. and Quercus cerris L. individuals were inoculated with Diplodia mutila (teleomorph Botryosphaeria stevensii Shoe-maker) to observe symptom evolution over 2 years. The experiments were carried out for the 3 years: 1991, 1992 and 1993. At the same time, the effect of D. mutila on leaf water potential and peroxidase activity was assessed on the leaves of 2-year-old seedlings from the same two species growing under controlled conditions (18 h day, relative humidity 75%), temperature 24/15°C day/night). Quercus pubescens was more susceptible than Q. cerris, and frequently exhibited dieback of the branch above the inoculation site. On the seedlings, the visible symptoms of infection were much more severe than on the older trees. The infected seedlings showed a lower leaf water potential than healthy seedlings, particularly those of Q. pubescens after the third week. The peroxidase activity was increased in infected Q. pubescens seedlings compared with both groups of control seedlings (wounded but not inoculated, and neither wounded nor inoculated) 14 and 21 days after inoculation. Leaf water potential and peroxidase activity are known indicators of stress which appear even before any visible symptoms; they could therefore serve as early indicators of D. mutila infection.  相似文献   

19.
In plants, besides being the final step leading to the death of the whole organism, senescence has a developmental function involving the coordinated degradation of macromolecules and the mobilization of nutrients out of senescing tissues into developing parts of the plant. Free radicals are thought to play an essential role in senescence, especially those derived from oxygen. Since these molecules are extremely toxic, the levels of the different reactive oxygen species have to be tightly regulated. However, at low concentrations, hydrogen peroxide may also serve as a signalling molecule. Therefore, a coordinated regulation of the free radical scavenging system, which comprises enzymatic components such as catalase, superoxide dismutase and ascorbate peroxidase, and non-enzymatic molecules such as ascorbate and glutathione is essential. The increased radical levels displayed during senescence are not only caused by the elevated production of radicals but also by a loss in antioxidant capacity.  相似文献   

20.
In the context of global warming, the impact of extreme drought events on trees and biotic interactions with herbivore insects is widely unknown. A faster range expansion of insects in a changing climate could lead to mass propagations of pests in forests. Therefore, the aim was to investigate the influence of climatic alterations on leaf palatability. We exposed juvenile Quercus pubescens Willd. individuals of four European provenances (Bulgaria, Germany, Hungary, and Italy) to warming and drought. In addition, we conducted a palatability experiment with the pre-exposed Q. pubescens leaves and the caterpillars of the generalist forest pest Lymantria dispar L. (gypsy moth). Consumed leaf dry material, density of trichomes, and specific leaf area were examined. Surprisingly, neither warming nor drought affected the leaf palatability, but palatability was related to the density of trichomes. The Bulgarian provenance of Q. pubescens, which had the lowest density of trichomes, was most palatable. These findings suggest that global warming and drought might not lead to more frequent infestations of the four tested European Q. pubescens provenances by L. dispar caterpillars in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号