首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sugars are important signals in the regulation of plant metabolism and development. During stress and in senescing leaves, sugars often accumulate. In addition, both sugar accumulation and stress can induce leaf senescence. Infection by bacterial and fungal pathogens and attack by herbivores and gall-forming insects may influence leaf senescence via modulation of the sugar status, either by directly affecting primary carbon metabolism or by regulating steady state levels of plant hormones. Many types of biotic interactions involve the induction of extracellular invertase as the key enzyme of an apoplasmic phloem unloading pathway, resulting in a sourcesink transition and an increased hexose/sucrose ratio. Induction of the levels of the phytohormones ethylene and jasmonate in biotic interactions results in accelerated senescence, whereas an increase in plant- or pathogen-derived cytokinins delays senescence and results in the formation of green islands within senescing leaves. Interactions between sugar and hormone signalling also play a role in response to abiotic stress. For example, interactions between sugar and abscisic acid (ABA) signalling may be responsible for the induction of senescence during drought stress. Cold treatment, on the other hand, can result in delayed senescence, despite sugar and ABA accumulation. Moreover, natural variation can be found in senescence regulation by sugars and in response to stress: in response to drought stress, both drought escape and dehydration avoidance strategies have been described in different Arabidopsis accessions. The regulation of senescence by sugars may be key to these different strategies in response to stress.  相似文献   

3.
4.
Leaf senescence, which constitutes the final stage of leaf development, involves programmed cell death and is intricately regulated by various internal and environmental signals that are incorporated with age-related information. ABA plays diverse and important physiological roles in plants, and is involved in various developmental events and stress responses. ABA has long been regarded as a positive regulator of leaf senescence. However, the cellular mediators of ABA-induced senescence have not been identified. We sought to understand the ABA-induced senescence signaling process in Arabidopsis by examining the function of an ABA- and age-induced gene, RPK1, which encodes a membrane-bound, leucine-rich repeat-containing receptor kinase (receptor protein kinase 1). Loss-of-function mutants in RPK1 were significantly delayed in age-dependent senescence. Furthermore, rpk1 mutants exhibited reduced sensitivity to ABA-induced senescence but little change to jasmonic acid- or ethylene-induced senescence. RPK1 thus mediates ABA-induced leaf senescence as well as age-induced leaf senescence. Conditional overexpression of RPK1 at the mature stage clearly accelerated senescence and cell death, whereas induction of RPK1 at an early developmental stage retarded growth without triggering senescence symptoms. Therefore, RPK1 plays different roles at different stages of development. Consistently, exogenously applied ABA affected leaf senescence in old leaves but not in young leaves. The results, together, showed that membrane-bound RPK1 functions in ABA-dependent leaf senescence. Furthermore, the effect of ABA and ABA-inducible RPK1 on leaf senescence is dependent on the age of the plant, which in part explains the mechanism of functional diversification of ABA action.  相似文献   

5.
Our group (Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS; Am J Physiol Renal Physiol 294: F100-F109, 2008) previously observed an accumulation of gangliosides coincident with development of cell senescence and demonstrated lysosomal permeabilization in human umbilical vein endothelial cells exposed to glycated collagen I (GC). Therefore, we investigated whether the lysosome-dependent, caspase-independent or type 2-programmed cell death (autophagy) is involved in development of premature senescence of endothelial cells. The cleaved microtubule-associated protein 1 light-chain 3 (LC3), a marker of autophagosome formation, was overexpressed within 24 h of GC treatment; however, by 4-5 days, it was nearly undetectable. Early induction of autophagosomes was associated with their fusion with lysosomes, a phenomenon that later became subverted. Autophagic cell death can be triggered by the products of damaged plasma membrane, sphingolipids, and ceramide. We observed a clustering of membrane rafts shortly after exposure to GC; later, after 24 h, we observed an internalization, accompanied by an increased acid sphingomyelinase activity and accumulation of ceramide. Pharmacological inhibition of autophagy prevented development of premature senescence but did lead to the enhanced rate of apoptosis in human umbilical vein endothelial cells exposed to GC. Pharmacological induction of autophagy resulted in reciprocal changes. These observations appear to represent a mechanistic molecular cascade whereby advanced glycation end products like GC induce sphingomyelinase activity, accumulation of ceramide, clustering, and later internalization of lipid rafts.  相似文献   

6.

Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its occurrence may cause the shorten leaf photosynthetic period and markedly lowered grain yield. However, the physiological metabolism underlying N deficiency-induced leaf senescence and its relationship with the abscisic acid (ABA) concentration and reactive oxygen species (ROS) burst in leaf tissues are not well understood. In this paper, the effect of N supply on several senescence-related physiological parameters and its relation to the temporal patterns of ABA concentration and ROS accumulation during leaf senescence were investigated using the premature senescence of flag leaf mutant rice (psf) and its wild type under three N treatments. The results showed that N deficiency hastened the initiation and progression of leaf senescence, and this occurrence was closely associated with the upregulated expression of 9-cis-epoxycarotenoiddioxygenase genes (NCEDs) and with the downregulated expression of two ABA 8′-hydroxylase isoform genes (ABA8ox2 and ABA8ox3) under LN treatment. Contrarily, HN supply delayed the initiation and progression of leaf senescence, concurrently with the suppressed ABA biosynthesis and relatively lower level of ABA concentration in leaf tissues. Exogenous ABA incubation enhanced ROS generation and MDA accumulation in a dose-dependent manner, but it decreased the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in detached leaf. These results suggested that the participation of ABA in the regulation of ROS generation and N assimilating/remobilizing metabolism in rice leaves was strongly responsible for induction of leaf senescence by N deficiency.

  相似文献   

7.
Defined solutions containing cytokinin and/or mineral nutrientswere supplied in lieu of the roots through the cut stem baseof soybean explants (a leaf with associated pod and subtendingstem segment) in order to analyze the roles of cytokinin andmineral nutrients from the roots in pod development and foliarmaintenance. In explants cut at early-mid podfill, supplyingonly H2O accelerated leaf senescence and pod maturation anddecreased seed d. wt relative to comparable parts of intactplants. Zeatin (Z) and/or minerals not only delayed leaf yellowingand the decline in foliar chlorophyll levels and photosyntheticrates but also inhibited leaflet and petiole abscission relativeto H2O controls. Even large declines in foliar assimilatoryprocesses did not necessarily lead to abscission. Z and/or mineralsalso increased stomatal conductivity throughout podfill. Z showedsome positive synergistic effects with minerals on leaf maintenance.Pod wall, cotyledon and radicle yellowing were delayed by Zand/or minerals but not as much as leaf senescence. Mineralsonly or Z +minerals prolonged seed d. wt accumulation and increasedfinal dry seed wt to a level similar to that for intact plants.Seed growth showed a complex interrelation with pod wall andleaf f. wt and d. wt changes. A decline in cytokinin and mineralflux from the roots appears to be important for pod-inducedleaf senescence; however, pod development, foliar senescenceand their component processes may be affected differently. Thus,even though the explant is a physiological/nutritional moduleof the whole plant, it is influenced by cytokinin and mineralsfrom the roots and therefore only semiautonomous. Glycine max L. Merr. cv. Anoka, soybean, abscission, cytokinin, chlorophyll, mineral nutrients, seed development, semiautonomous physiological modules, senescence, stomatal resistance  相似文献   

8.
Although leaf senescence results in a loss of photosynthetic carbon fixation, the senescence-dependent release of nutrients, especially of nitrogen, is important for the growth of young leaves and for reproduction. Environmental regulation of senescence is therefore a vital factor in the carbon and nitrogen economy of plants. Leaf senescence is a highly plastic trait that is affected by a range of different environmental factors including light, nutrient supply, CO2 concentration, and abiotic and biotic stress. In this review, the focus is on the impact of environmental conditions on sugar accumulation and sugar signalling during senescence. By signalling a high availability of carbon relative to nitrogen in the old leaves, sugar accumulation can trigger leaf senescence. Sugar-induced senescence is therefore particularly important under low nitrogen availability and may also play a role in light signalling. Whether or not sugars are involved in regulating the senescence response of plants to elevated CO2 remains unresolved. Senescence can be delayed or accelerated in elevated CO2 and no clear relationship between sugar accumulation and senescence has been found. Plasticity in the response to environmental factors, such as daylength and sugar accumulation, varies between different Arabidopsis accessions. This natural variation can be exploited to analyse the genetic basis of the regulation of senescence and the consequences for growth and fecundity. Different evolutionary strategies, i.e. early senescence combined with a high reproductive effort or late senescence combined with a low reproductive effort, may be an important adaptation of Arabidopsis accessions to their natural habitat.  相似文献   

9.
Different parameters which vary during the leaf development in sunflower plants grown with nitrate (2 or 20 mM) for a 42‐day period have been determined. The plants grown with 20 mM nitrate (N+) showed greater leaf area and specific leaf mass than the plants grown with 2 mM nitrate (N?). The total chlorophyll content decreased with leaf senescence, like the photosynthetic rate. This decline of photosynthetic activity was greater in plants grown with low nitrogen level (N?), showing more pronounced senescence symptoms than with high nitrogen (N+). In both treatments, soluble sugars increased with aging, while starch content decreased. A significant increase of hexose to sucrose ratio was observed at the beginning of senescence, and this raise was higher in N? plants than in N+ plants. These results show that sugar senescence regulation is dependent on nitrogen, supporting the hypothesis that leaf senescence is regulated by the C/N balance. In N+ and N? plants, ammonium and free amino acid concentrations were high in young leaves and decreased progressively in the senescent leaves. In both treatments, asparagine, and in a lower extent glutamine, increased after senescence start. The drop in the (Glu+Asp)/(Gln+Asn) ratio associated with the leaf development level suggests a greater nitrogen mobilization. Besides, the decline in this ratio occurred earlier and more rapidly in N? plants than in N+ plants, suggesting that the N? remobilization rate correlates with leaf senescence severity. In both N+ and N? plants, an important oxidative stress was generated in vivo during sunflower leaf senescence, as revealed by lipid peroxidation and hydrogen peroxide accumulation. In senescent leaves, the increase in hydrogen peroxide levels occurred in parallel with a decline in the activity of antioxidant enzymes. In N+ plants, the activities of catalase and ascorbate peroxidase (APX) increased to reach their highest values at 28 days, and later decreased during senescence, whereas in N? plants these activities started to decrease earlier, APX after 16 days and catalase after 22 days, suggesting that senescence is accelerated in N‐leaves. It is probable that systemic signals, such as a deficit in amino acids or other metabolites associated with the nitrogen metabolism produced in plants grown with low nitrogen, lead to an early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

10.
The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.  相似文献   

11.
12.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

13.
Mechanism of monocarpic senescence in rice   总被引:15,自引:1,他引:14       下载免费PDF全文
During grain formation stage (90 to 110 days), the youngest flag leaf of rice (Oryza sativa L. cv. Jaya) remained metabolically most active (as indicated by cellular constituents and enzyme activities) and the third leaf the least active. At the grain development stage (110 to 120 days) the above pattern of age-related senescence of the flag leaf completely changed and it senesced at a faster rate than the second leaf which remained metabolically active even up to grain maturation time (120 to 130 days), when both the flag and the third leaf partially senesced. Removal of any leaf temporarily arrested senescence of the remaining attached leaves, that of flag leaf did not hasten senescence of the second leaf, while that of either the second or the third accelerated senescence of the flag. Removal of the inflorescence after emergence or foliar treatment of intact plant with kinetin equally delayed senescence and produced an age-related, sequential mode of senescence or leaves. Both translocation and retention of 32P by the flag leaf were maximum at the time of grain formation and that by the second leaf was maintained even up to grain maturation time. The induction of senescence of the flag leaf was preceded by a plentiful transport of 32P to the grains. Kinetin treatment decreased the transport of 32P, prolonged its duration, and almost equally involved all of the leaves in this process. The pattern of senescence of isolated leaf tips was similar to that of attached leaves. The level of endogenous abscisic acid-like substance(s) maintained a close linearity with the senescence behavior of the leaves of intact and defruited plants during aging, and the rise in abscisic acid in the flag leaf was also preceded by higher 32P transport to the grains.  相似文献   

14.
This review examines the hypotheses that developmental programmed cell death in leaves is mediated (i) by sugar starvation in the leaf cells or (ii) by sugar accumulation in these cells. Experimental evidence for both hypotheses is critically discussed and found to be lacking. For example, some papers show that sugars prevent senescence of cut leaves placed in darkness, and prevent low sugar levels in the leaves. In these tests, the sugars seem to replace photosynthesis, hence the results have little relevance to leaf senescence in intact plants in the light. Low nitrogen nutrition and high light results in earlier senescence than the low nitrogen treatment alone. This is accompanied by high sugar levels in the leaves. The results have led to the idea that accumulation of sugars is the cause of the additional effect, or more generally, that sugar accumulation is always the direct cause of leaf senescence. Results from over-expressing, or knocking out, hexokinase genes tend to support the high sugar hypothesis, but pleiotropic effects confound this conclusion. In addition, several experiments show the effects of treatments on senescence without the increase in leaf sugar levels. Nonetheless, sugar levels are usually measured in whole leaves. Such an overall level does not reflect the differences in the onset of senescence between tissues and cells, and can therefore not be used as an argument for or against either of the two hypotheses. It is argued that future work should determine the time line of the concentrations of various sugars in various cells and cellular compartments, in relation to senescence processes in the same cells. Taken together, the data are not decisive. It is possible that neither of the two hypotheses is correct.  相似文献   

15.
Leaf senescence is the final stage of leaf development in which the nutrients invested in the leaf are remobilized to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, exogenous application of cytokinins or an increase of the endogenous concentration delays senescence and causes nutrient mobilization. The finding that extracellular invertase and hexose transporters, as the functionally linked enzymes of an apolasmic phloem unloading pathway, are coinduced by cytokinins suggested that delay of senescence is mediated via an effect on source-sink relations. This hypothesis was further substantiated in this study by the finding that delay of senescence in transgenic tobacco (Nicotiana tabacum) plants with autoregulated cytokinin production correlates with an elevated extracellular invertase activity. The finding that the expression of an extracellular invertase under control of the senescence-induced SAG12 promoter results in a delay of senescence demonstrates that effect of cytokinins may be substituted by these metabolic enzymes. The observation that an increase in extracellular invertase is sufficient to delay leaf senescence was further verified by a complementing functional approach. Localized induction of an extracellular invertase under control of a chemically inducible promoter resulted in ectopic delay of senescence, resembling the naturally occurring green islands in autumn leaves. To establish a causal relationship between cytokinins and extracellular invertase for the delay of senescence, transgenic plants were generated that allowed inhibition of extracellular invertase in the presence of cytokinins. For this purpose, an invertase inhibitor was expressed under control of a cytokinin-inducible promoter. It has been shown that senescence is not any more delayed by cytokinin when the expression of the invertase inhibitor is elevated. This finding demonstrates that extracellular invertase is required for the delay of senescence by cytokinins and that it is a key element of the underlying molecular mechanism.  相似文献   

16.
17.
In this report we examine the factors that regulate photosynthesis during leaf ontogeny in y3y3 and Y11y11, two chlorophyll-deficient mutants of soybean. Photosynthetic rates were similar during wild type and Y11y11 leaf development, but the senescence decline in photosynthesis was accelerated in y3y3. Photosynthetic rates fell more rapidly than chlorophyll concentrations during senescence in wild type leaves, indicating that light harvesting is not strongly limiting for photosynthesis during this phase of leaf development. Chlorophyll concentrations in Y11y11, though significantly lower than normal, were able to support normal photosynthetic rates throughout leaf ontogeny. Chlorophyll a/b ratios were constant during leaf development in the wild type, but in the mutants they progressively increased (y3y3) or decreased (Y11y11). In all three sets of plants, photosynthetic rates were directly proportional to Rubisco contents and activities, suggesting that Rubisco plays a dominant role in regulating photosynthesis throughout leaf ontogeny in these plants. The expression of some photosynthetic proteins, such as Rubisco activase, was coordinately regulated with that of Rubisco in all three genotypes, i.e. an early increase, coincident with leaf expansion, followed by a senescence decline in the fully-expanded leaf. On the other hand, the light harvesting chlorophyll a/b-binding proteins of PS II (the CAB proteins), while they showed a profile similar to that of Rubisco in the wild type and y3y3, progressively increased in amount during Y11y11 leaf development. We conclude that Y11y11 may be defective in the accumulation of a component required for LHC II assembly or function, while y3y3 has more global effects and may be a regulatory factor that controls the duration of senescence.  相似文献   

18.
19.
This review reports the physiological and metabolic changes in plants during development under elevated atmospheric carbon dioxide concentration and/or limited-nitrogen supply in order to establish their effects on leaf senescence induction. Elevated CO2 concentration and nitrogen supply modify gene expression, protein content and composition, various aspects of photosynthesis, sugar metabolism, nitrogen metabolism, and redox state in plants. Elevated CO2 usually causes sugar accumulation and decreased nitrogen content in plant leaves, leading to imbalanced C/N ratio in mature leaves, which is one of the main factors behind premature senescence in leaves. Elevated CO2 and low nitrogen decrease activities of some antioxidant enzymes and thus increase H2O2 production. These changes lead to oxidative stress that results in the degradation of photosynthetic pigments and eventually induce senescence. However, this accelerated leaf senescence under conditions of elevated CO2 and limited nitrogen can mobilize nutrients to growing organs and thus ensure their functionality.  相似文献   

20.
Exogenous application of the lysophospholipid, lyso-phosphatidylethanolamine (LPE) is purported to delay leaf senescence in plants. However, lyso-phospholipids are well known to possess detergent-like activity and application of LPE to plant tissues might be expected to rather elicit a wound-like response and enhance senescence progression. Since phosphatidic acid (PA) accumulation and leaf cell death are a consequence of wounding, PA- and hormone-induced senescence was studied in leaf discs from Philodendron cordatum (Vell.) Kunth plants in the presence or absence of egg-derived 18:0-LPE and senescence progression quantified by monitoring both lipid peroxidation (as the change in malondialdehyde concentration), and by measuring retention of total chlorophyll (Chla+b) and carotenoids (Cc+x). Only abscisic acid (ABA) stimulated lipid peroxidation whereas ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene (ETH), and 16:0–18:2-PA stimulated loss of chloroplast pigments. Results using primary alcohols as attenuators of the endogenous PA signal confirmed a role for PA as an intermediate in both ABA- and ETH-mediated senescence progression. Exogenous 18:0-LPE did not appear to influence senescence progression and was unable to reverse hormone-induced senescence progression. However, when supplied together with 16:0–18:2-PA at 1:1 (mol:mol), activity of phosphatidylglycerol (PG) hydrolase, chlorophyllase (E.C. 3.1.1.14), and progression of leaf senescence were negated. This apparent anti-senescence activity of exogenous 18:0-LPE was associated with induction of the pathogenesis-related protein, extracellular acid invertase (Ac INV, E.C. 3.2.1.26) suggesting that 18:0-LPE like 16:0–18:2-PA functions as an elicitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号