首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

2.
田间大豆叶片成长过程中的光合特性及光破坏防御机制   总被引:9,自引:0,他引:9  
田间大豆叶片在成长进程中光饱和光合速率持续提高,但气孔导度的增加明显滞后.尽管叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片.随着叶片的成长,光下叶片光系统Ⅱ实际效率增加;非光化学猝灭下降.幼叶叶黄素总量与叶绿素之比较高,随着叶面积的增加该比值下降,在光下,幼叶的脱环氧化程度较高.因此认为大豆叶片成长初期就能够有效地进行光化学调节;在叶片生长过程中依赖叶黄素循环的热耗散机制迅速建立起来有效抵御强光的破坏.  相似文献   

3.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

4.
Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas.  相似文献   

5.
The characteristics of photosynthetic gas exchange, chlorophyll a fluorescence, and xanthophyll cycle pigments during flag leaf senescence of field-grown wheat plants were investigated. With senescence progressing, the light-saturated net CO2 assimilation rate expressed either on a basis of leaf area or chlorophyll decreased significantly. The apparent quantum yield of net photosynthesis decreased when expressed on a leaf area basis but increased when expressed on a chlorophyll basis. The maximal efficiency of PSII photochemistry decreased very little while actual PSII efficiency, photochemical quenching, and the efficiency of excitation capture by open PSII centers decreased considerably. At the same time, non-photochemical quenching increased significantly. A substantial decrease in the contents of violaxanthin and zeaxanthin, but a slight decrease in the content of antheraxanthin were observed. However, the de-epoxidation status of the xanthophyll cycle was positively correlated with progressive senescence. This increase was due mainly to a smaller decrease in zeaxanthin than in violaxanthin. Our results suggest that PSII apparatus remained functional, but a down-regulation of PSII occurred under the steady state of photosynthesis in senescent flag leaves. Such a down-regulation was associated with the closure of PSII centers and an enhanced xanthophyll cycle-related thermal dissipation in the PSII antennae.  相似文献   

6.
探明超级小麦品种的旗叶光合作用与荧光动力学特性,为超级小麦品种选育利用提供理论依据。以超级小麦临麦4号为试验材料,应用CI-301PS型便携式光合作用测定系统和FMS-2便携式荧光测定仪(英国Hansatech公司)在田间试验中测定旗叶光合作用与荧光动力学参数。结果表明,与普通高产对照品种皖麦52和烟农19相比,超级小麦临麦4号的光合作用参数光合速率、光饱和点和CO2饱和点、羧化效率高,光补偿点和CO2补偿点低;光合机构系统工作参数PSII实际的光化学效率(ΦPSII)、光化学猝灭系数(qP)、PSII反应中心的激发能捕获效率(Fv/Fm)、PSⅡ潜在活性Fv/Fo和电子传递速率(ETR)值高,非光化学猝灭系数(NPQ)值低。这表明超级小麦临麦4号的光合机构系统工作能力强和工作效率高,保证旗叶光合作用的高效运行,为子粒灌浆提供充足的能量和碳水化合物。  相似文献   

7.
追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响   总被引:28,自引:1,他引:27  
在大田条件下,研究了不同追氮时期对小麦旗叶叶绿素荧光特性、光合速率及籽粒产量的影响.结果表明,拔节期追肥较起身期或挑旗期追肥,改善了小麦旗叶PSⅡ的活性(Fv/Fo)、光化学最大效率(Fv/Fm)、光化学猝灭系数(qP)、实际量子产量(ΦPSⅡ)及光合速率,降低了籽粒灌浆中前期非辐射能量耗散,有利于叶片所吸收的光能较充分地用于光合作用,提高了籽粒灌浆后期非辐射能量的耗散,减缓了叶片光抑制程度和衰老进程.拔节期追肥可显著增加穗粒数和千粒重,提高产量.  相似文献   

8.
Pigment combinations are regulated during leaf ontogenesis. To better understand pigment function, alterations in chlorophyll, carotenoid and anthocyanin concentrations were investigated during different leaf development stages in six subtropical landscape plants, namely Ixora chinensis Lam, Camellia japonica Linn, Eugenia oleina Wight, Mangifera indica L., Osmanthus fragrans Lowr and Saraca dives Pierre. High concentrations of anthocyanin were associated with reduced chlorophyll in juvenile leaves. As leaves developed, the photosynthetic pigments (chlorophyll and carotenoid) of all six species increased while anthocyanin concentration declined. Chlorophyll fluorescence imaging of ΦPSII (effective quantum yield of PSII) and of NPQ (non-photochemical fluorescence quenching) and determination of electron transport rate-rapid light curve (RLC) showed that maximum ETR (leaf electron transport rate), ΦPSII and the saturation point in RLC increased during leaf development but declined as they aged. Juvenile leaves displayed higher values of NPQ and Car/Chl ratios than leaves at other developmental stages. Leaf reflectance spectra (400–800 nm) were measured to provide an in vivo non-destructive assessment of pigments in leaves during ontogenesis. Four reflectance indices, related to pigment characters, were compared with data obtained quantitatively from biochemical analysis. The results showed that the ARI (anthocyanin reflectance index) was linearly correlated to anthocyanin concentration in juvenile leaves, while a positive correlation of Chl NDI (chlorophyll normalized difference vegetation index) to chlorophyll a concentration was species dependent. Photosynthetic reflectance index was not closely related to Car/Chl ratio, while a structural-independent pigment index was not greatly altered by leaf development or species. Accordingly, it is suggested that the high concentration of anthocyanin, higher NPQ and Car/Chl ratio in juvenile leaves are important functional responses to cope with high radiation when the photosynthetic apparatus is not fully developed. Another two leaf reflectance indices, ARI and Chl NDI, are valuable for in vivo pigment evaluation during leaf development.  相似文献   

9.
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion.  相似文献   

10.
C. Xu  Y. Yin  R. Cai  P. Wang  Y. Ni  J. Guo  E. Chen  T. Cai  Z. Cui  T. Liu  D. Yang  Z. Wang 《Photosynthetica》2013,51(1):139-150
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (P N), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high P N duration, and accumulation of photosynthates in wheat plants.  相似文献   

11.
Gas exchange, chlorophyll a fluorescence and modulated 820 nm reflection were investigated to explore the development of photosynthesis in Jerusalem artichoke (Helianthus tuberosus L.) leaves from initiation to full expansion. During leaf expansion, photosynthetic rate (Pn) increased and reached the maximal level when leaves were fully expanded. The same change pattern was also found in the stomatal conductance and chlorophyll content. Lower Pn could not be ascribed to the higher stomatal resistance in developing leaves, as intercellular CO2 concentration was not significantly lower in these leaves. Lower Pn partly resulted from the lower actual photochemical efficiency of PSII in developing leaves, as more excited energy was dissipated through non-photochemical quenching. The development of primary photochemical reaction and electron transport in the donor side of PSII was completed in the initiating leaves. However, the development of electron transport in the acceptor side of PSII was not accomplished until leaves were fully expanded, indicated by the change in probability that an electron moves further than primary quinone (ψo). PSI activity changed in parallel with ψo suggesting that PSI cooperated well with PSII during leaf expansion. It should be stressed that the development of carbon fixation process was later than primary photochemical reaction but earlier than photosynthetic electron transport during leaf expansion. The later development of photosynthetic electron transport may reduce the production of reactive oxygen species from Mehler reaction, particularly under low carbon fixation.  相似文献   

12.
A flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) is described that allows to screen and image the photosynthetic activity of several thousand leaf points (pixels) of intact leaves in a non-destructive way within a few seconds. This includes also the registration of several thousand leaf point images of the four natural fluorescence bands of plants in the blue (440 nm) and green (520 nm) regions as well as the red (near 690 nm) and far-red (near 740 nm) Chl fluorescence. The latest components of this Karlsruhe FL-FIS are presented as well as its advantage as compared to the classical single leaf point measurements where only the fluorescence information of one leaf point is sensed per each measurement. Moreover, using the conventional He-Ne-laser induced two-wavelengths Chl fluorometer LITWaF, we demonstrated that the photosynthetic activity of leaves can be determined measuring the Chl fluorescence decrease ratio, RFd (defined as Chl fluorescence decrease Fd from maximum to steady state fluorescence Fs:Fd/Fs), that is determined by the Chl fluorescence induction kinetics (Kautsky effect). The height of the values of the Chl fluorescence decrease ratio RFd is linearly correlated to the net photosynthetic CO2 fixation rate P N as is indicated here for sun and shade leaves of various trees that considerably differ in their P N. Imaging the RFd-ratio of intact leaves permitted the detection of considerable gradients in photosynthetic capacity across the leaf area as well as the spatial heterogeneity and patchiness of photosynthetic quantum conversion within the control leaf and the stressed plants. The higher photosynthetic capacity of sun versus shade leaves was screened by Chl fluorescence imaging. Profile analysis of fluoresence signals (along a line across the leaf area) and histograms (the signal frequency distribution of the fluorescence information of all measured leaf pixels) of Chl fluorescence yield and Chl fluorescence ratios allow, with a high statistical significance, the quantification of the differences in photosynthetic activity between various areas of the leaf as well as between control leaves and water stressed leaves. The progressive uptake and transfer of the herbicide diuron via the petiole into the leaf of an intact plant and the concomitant loss of photosynthetic quantum conversion was followed with high precision by imaging the increase of the red Chl fluorescence F690. Differences in the availability and absorption of soil nitrogen of crop plants can be documented via this flash-lamp fluorescence imaging technique by imaging the blue/red ratio image F440/F690, whereas differences in Chl content are detected by collecting images of the fluorescence ratio red/far-red, F690/F740.  相似文献   

13.
小麦开花后,随着旗叶的衰老,旗叶中1,5-二磷酸核酮糖羧化酶(RuBPC)、磷酸烯醇式丙酮酸羧化酶(PEPC)和乙醇酸氧化酶(GO)活性呈下降趋势。随着追施氮肥时期的推迟,光合酶活性呈增加趋势,这意味着氮肥追施时间后移有利于提高小麦光合速率。在旗叶衰老后期,大穗型品种小麦旗叶中光合酶活性略高于多穗型品种小麦。  相似文献   

14.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

15.
比较研究了‘早美’和‘春蕾’2个早熟桃品种夏季叶色转红对太阳光能的利用和光系统Ⅱ的叶绿素荧光特征的影响。结果表明:早熟桃叶片色素组成的变化会显著影响其光合和叶绿素荧光特性。叶色转红后,早熟桃净光合速率(Pn)日均值、PSII最大光化学效率(Fv/Fm)、PSII实际光化学效率(ФPSII)均上升,无显著光抑制,而绿叶对照‘红花碧桃’的电子传递速率(ETR)、Fv/Fm和ФPSII值均显著下降,7月光合明显受抑制。叶色转红程度较深的‘早美’在夏季高温强光下表现优于‘春蕾’和对照。淬灭分析表明:叶片花色素苷的积累能在短时间内增加PSII天线色素吸收的光能用于光化学反应的份额(P)与用于反应中心热耗散的相对份额(D)。转红后的叶片光化学淬灭系数(qp)显著高于绿叶,PSII光化学效率较高,但耗散过剩激发能的能力显著低于绿叶对照。  相似文献   

16.
Photochemical efficiency of PSII of Ctenanthe setosa was investigated to understand the photosynthetic adaptation mechanism under drought stress causing leaf rolling. Stomatal conductance (g s), the levels of photosynthetic pigments and chlorophyll (Chl) fluorescence parameters were determined in leaves that had four different visual leaf rolling scores from 1 to 4, opened after re-watering and mechanically opened at score 4. g s value gradually decreased in adaxial and abaxial surfaces in relation to scores of leaf rolling. Pigment contents decreased until score 3 but approached score 1 level at score 4. No significant variations in effective quantum yield of PSII (ΦPSII), and photochemical quenching (qp) were found until score 3, while they significantly decreased at score 4. Non-photochemical quenching (NPQ) increased at score 2 but then decreased. After re-watering, the Chl fluorescence and other physiological parameters reached to approximately score 1 value, again. As for mechanically opened leaves, g s decreased during drought period. The decrease in adaxial surface was higher than that of the rolled leaves. NPQ was higher than that of the rolled leaves. ΦPSII and qp significantly declined and the decreases were more than those of the rolled leaves. In conclusion, the results indicate that leaf rolling protects PSII functionality from damage induced by drought stress.  相似文献   

17.
In wheat ( Triticum aestivum L), the leaves particularly flag leaves have been considered to be the key organs contributing to higher yields, whereas awns have been considered subsidiary organs. Compared with extensive investigations on the assimilation contribution of leaves, the photosynthetic characteristics of awns have not been well studied. In this study, we investigated the ultrastructure of chloroplasts, oxygen evolution, and phosphoenolpyruvate carboxylase [phosphoenolpyruvate carboxylase (PEPCase) EC 4.1.1.31)] activity in both flag leaves and awns during the ontogenesis of wheat. Transmission electron microscope observations showed initial increases in the sizes of grana and the degree of granum stacks from the florescence-emergence stage both in flag leaves and in awns, followed by the breakdown of membrane systems after the milk-development stage. The results of oxygen evolution assays revealed that in both organs, the rate of photosynthesis increased in the first few stages and then decreased, but the decrease occurred much earlier in flag leaves than in awns. A PEPCase activity assay demonstrated that the activity of PEPCase was much higher in awns than in flag leaves throughout ontogeny; the value was particularly high at the late stages of grain filling. Our results suggest that awns play a dominant role in contributing to large grains and a high grain yield in awned wheat cultivars, particularly during the grain-filling stages.  相似文献   

18.
为了探讨控制水稻(Oryza sativa L.)颖果发育的因素,选择了颖果干重有显著差异的Ootikara(大粒,36mg/粒)和Habataki(小粒,18 mg/粒)两个水稻品种,比较颖果重量、胚乳细胞数、果皮和胚乳的结构以及某些生理活性等变化.结果指出:与Habataki相比,Ootikara子房壁细胞和颖果的持续生长期长,最终颖果的胚乳细胞数目和每个细胞的平均干重大;Ootikara颖果的脱氢酶和H2O2酶活性、穗的呼吸速率、剑叶的绿色程度和光合速率等维持高水平的时间长;Ootikara子房背部维管束失去功能的时间也较迟.结果表明,大粒品种的库容大和生理活性期长是其颖果能显著增大的生理原因.  相似文献   

19.
Improving wheat grain yield plays a significant role in ensuring global food security. Wheat production could be increased by the genetic improvement of wheat genotypes where delayed senescence with enhanced post-anthesis capacity and staygreen traits could have an important role. In this study, chlorophyll a fluorescence (ChlF) rise kinetics from the early until late senescence of flag leaves, grain yield and other agro-morphological characteristics were compared for three winter wheat advanced lines (Osk.4.312/10-18, Osk.4.330/6-18 and Osk.4.354/12-18) under natural drought conditions. The differences between lines were observed when considering the heading date which was 1 and 4 days earlier for the line Osk.4.354/12-18, than lines Osk.4.312/10-18 and Osk.4.330/6-18, respectively. Furthermore, line Osk.4.354/12-18 had the highest test weight (kg hl−1), while line Osk.4.330/6-18 showed a tendency of decreased grain yield, compared to the other two lines. Analysis of ChlF transients and several JIP-test parameters indicated that all three lines had a generally similar course of changes in the photosynthetic performance of flag leaves during senescence under drought conditions. However, at the point when a decrease in photosynthetic performance was initiated, it was slightly less intensive in line Osk.4.354/12-18 accompanied by longer preservation of functionality and connectivity of PSII units, than in the other two lines, which contributed to its better agronomical performance. These results indicated that even delicate variations in the functioning of the photosynthetic apparatus of the flag leaf during grain filling were agronomically important, especially when plants were exposed to drought stress, and could be used to differentiate otherwise similar wheat genotypes. Even small genotype-specific differences in the photosynthetic performance of senescing flag leaves, along with earlier heading dates, could assist in the selection of genotypes with a better ability to cope with unfavourable environmental conditions.  相似文献   

20.
小麦品种的更新换代是小麦产量不断提高的重要因素,阐明小麦品种演替过程中不同生理特性的变化对新品种选育具有重要参考价值.旗叶衰老速率快慢是影响小麦产量水平的关键因素,目前对于不同小麦品种衰老过程中旗叶光系统Ⅱ功能的变化规律尚不清楚.本试验选用1941-2014年间河南地区不同时期种植的31个品种,通过黑暗诱导离体叶片衰老,测定旗叶叶绿素荧光诱导动力学参数、叶绿素相对含量的变化,分析了光系统Ⅱ功能的变化规律.结果表明:品种演替过程中旗叶的叶绿素含量逐渐提高,衰老过程中近代品种叶绿素的降解速率低于较早年代品种;旗叶衰老过程中,近代品种荧光诱导动力学曲线的J点上升幅度小于I点;品种更替过程中光系统Ⅱ最大光化学效率和单位面积有活性反应中心数目逐渐增加,但是近代品种降低速率低于较早年代品种.叶绿素含量的变化与未衰老叶片中Fv/Fm没有显著相关性,但是随着衰老程度增加,相关性逐渐增大,且趋势线斜率逐渐提高;光系统Ⅱ单位面积有活性反应中心数目与品种育成时间呈显著正相关,且随着衰老程度增加,相关程度和趋势线斜率均显著提高.综上,小麦品种演替过程中,旗叶叶绿素含量逐渐升高,降解速率逐渐减缓,光合电子传递过程中QA到QB电子传递的抗衰老能力得到改善,从而减缓了衰老过程中光系统Ⅱ最大光化学效率和有活性反应中心的衰减速率,同时,叶绿素含量的提高和旗叶光系统Ⅱ抗衰老能力的增强也是品种更替过程中产量逐渐提高的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号