首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We conducted experiments to examine the quantitative relationships between rainfall event size and rainwater uptake and use by four common native plant species of the Colorado Plateau, including two perennial grasses, Hilaria jamesii (C(4)) and Oryzopsis hymenoides (C(3)), and two shrubs, Ceratoides lanata (C(3)), and Gutierrezia sarothrae (C(3)). Specifically, we tested the hypothesis that grasses use small rainfall events more efficiently than shrubs and lose this advantage when events are large. Rainfall events between 2 and 20 mm were simulated in spring and summer by applying pulses of deuterium-labeled irrigation water. Afterwards, pulse water fractions in stems and the rates of leaf gas exchange were monitored for 9 days. Cumulative pulse water uptake over this interval (estimated by integrating the product of pulse fraction in stem water and daytime transpiration rate over time) was approximately linearly related to the amount of pulse water added to the ground in all four species. Across species, consistently more pulse water was taken up in summer than in spring. Relative to their leaf areas, the two grass species took up more pulse water than the two shrub species, across all event sizes and in both seasons, thus refuting the initial hypothesis. In spring, pulse water uptake did not significantly increase photosynthetic rates and in summer, pulse water uptake had similar, but relatively small effects on the photosynthetic rates of the three C(3) plants, and a larger effect on the C(4) plant H. jamesii. Based on these data, we introduce an alternative hypothesis for the responses of plant functional types to rainfall events of different sizes, building on cost-benefit considerations for active physiological responses to sudden, unpredictable changes in water availability.  相似文献   

2.
为了比较不同植物功能型在沙地生境下光合作用和水分利用效率的差异,测定了浑善达克沙地3种功能型的代表种的气体交换特征来比较它们的光合碳固定能力和水分利用状况。3个代表种的气体交换日变化结果表明乔木的光合速率和水分利用效率比草本和灌木的低,而蒸腾速率和气孔导度较高,经过中午的光合午休后,乔木的光合速率在下午没有恢复,而草本和灌木都有不同程度的恢复。在所测定的所有代表物种中,研究地全部的乔木(3种)和灌木(6种)以及典型的草本(2 5种) ,气孔导度与光合速率和蒸腾速率都成显著的正相关关系;另外,在同样的叶片水势情况下,乔木植物的气孔导度最低,在同样的蒸腾速率情况下,乔木植物的光合速率最低。这些结果表明乔木在CO2 同化和H2 O蒸腾平衡上具有低的水分利用效率。从这个角度考虑,我们认为在对沙地进行恢复时,一些草本和灌木种比乔木更合适  相似文献   

3.
3种荒漠灌木的用水策略及相关的叶片生理表现   总被引:27,自引:0,他引:27  
许皓  李彦 《西北植物学报》2005,25(7):1309-1316
以新疆古尔班通古特沙漠南缘原始盐生旱生荒漠的3种建群灌木多枝柽柳(Tamarix ramosissima)、梭梭(Haloxylon ammodendron)和琵琶柴(Reaumuria soongorica)为对象,跟踪自然降雨过程,利用LI-6400光合作用系统和Model 3005植物水分压力审测定光合作用和叶水势的变化,以研究浅层土壤水分条件改变对荒漠灌木主要叶片生理特征的影响;并在原始生境中将植株根系完整地深挖取出,进行根系形态结构调查,以确定此3种灌木根系功能型与用水策略。当浅层土壤分别处在水分充足及匮缺的条件下时.测定3种灌木的光合作用响应曲线和日过程曲线.以及黎明前和止午叶水势,结果表明:浅层土壤水分状况变化时,3种灌木的光合能力均没有显著改变;多枝柽柳的叶水势亦没有明显波动;而梭梭和琵琶柴的叶水势却表现出显著差异。在两种功能型根中,多枝柽柳为深根型,生存和乍理活动的维持主要依赖于地下水;而梭梭和琵琶柴为非深根型植物,主要水源是降水形成的浅层土壤水,其用水策略是根据水分条件行效调节根系和冠层生长,从而维持正常的光合作用。即荒漠灌木在长期适应的过样中.已形成不同的根系功能型和用水策略;叶水势对浅层土壤水分状况变化的种间差异性响应在一定程度上反映了这一点。同时.此3种荒漠灌小通过不同的个体适应策略都能够实现水分平衡和碳收支的有效调节,这主要体现为浅层土壤水分条件变化时光合响应的种间一致性。  相似文献   

4.
根据野外调查、标本鉴定及查阅文献,对新疆甘家湖梭梭林自然保护区植物组成、地理成分进行了研究。结果显示:保护区共有维管植物62科236属448种,其中蕨类植物2科2属3种,裸子植物1科1属4种,被子植物59科233属441种。藜科、菊科、禾本科、十字花科、豆科为优势科,所含属、种数占该保护区总数的49.15%和51.12%;属内种数的变化范围为1~13种,仅含1种的属最多,有144个,占总属数的61.02%。植物生活型组成多样,草本375种、灌木65种、乔木5种、藤本3种,分别占保护区总种数的83.71%、14.51%、1.12%和0.67%。植物群落组成简单,以梭梭群落(Form.Haloxylon ammodendron)、白梭梭群落(Form.Haloxylon persicum)为主,它们与超旱生、旱生灌木、小灌木、草本等组成荒漠植被。保护区种子植物60科可划分为4个分布区类型和7个变型,以温带地理成分为主(14科),占保护区非世界分布的56.00%;234个属可划分为12个分布区类型和12个变型,其中北温带分布及其变型73属,占保护区非世界分布的37.44%,地中海、中亚、东亚分布在此地交流融合,缺乏热带成分,具强烈的温带荒漠性质。  相似文献   

5.
为比较干旱荒漠区城市绿化灌木和荒漠乡土灌木在夏季热浪期的受损差异和其对高温和热浪冲击响应机理的不同,在新疆北疆2022年夏季热浪期末期,测定了9种荒漠乡土灌木和8种城市绿化灌木的4种水分相关功能性状(水力、叶片、光合和碳经济性状),同时调查植株受损程度。调查结果表明,荒漠乡土灌木接近74%的个体在夏季热浪中未受损伤,但有56%的城市绿化灌木个体受损;水力和叶片性状方面,荒漠灌木的枝叶水势、干物质含量和导管直径的平均值低于城市绿化植物,而枝比导率、准稳态导水率、胡伯尔值、比叶面积、导管密度呈相反态势。在碳经济和光合性状方面,荒漠乡土灌木的可溶性碳含量和水分利用效率高于城市绿化灌木(P<0.05),但气孔导度成相反模式(P <0.05),而淀粉和结构性碳含量、蒸腾速率无显著差异(P>0.05);荒漠乡土灌木的性状整合度(G=0.39)高于城市绿化植物(G=0.20),且前者的关键节点个数,以及其与其他性状显著关联的个数均高于后者。结果表明,2022年夏季热浪引起荒漠乡土灌木的受损程度低于城市绿化灌木;荒漠植物在水力性状和性状整合方面存在优势,其水分吸收、运输和减少蒸腾失水的能力要强于城市绿化灌木,热浪影响下更易存活;相对城市绿化灌木,荒漠灌木可以协调功能性状间的关系,采取更多样化的适应机理将降低夏季热浪的负面影响。本研究可为干旱地区城市绿化灌木筛选以及区域生态保护政策制定提供科学参考。  相似文献   

6.
Galmés J  Cifre J  Medrano H  Flexas J 《Oecologia》2005,145(1):21-31
Effects of water availability on seedling growth were analysed in eight Mediterranean species naturally occurring in the Balearic Islands. Seedlings were grown outdoors during summer under two irrigation treatments: field capacity and 35% of field capacity. The relative growth rate (RGR) strongly depended on the growth form, from highest values in herbs to lowest in woody perennials. The main component associated with interspecific variation in RGR was the specific leaf area (SLA), and a quantitative grouping of the different growth forms appeared along the regression line between both parameters. The slow-growing species, i.e. woody perennial shrubs, had the lowest SLA and the fast-growing perennial herbs, the highest, while woody semi-deciduous shrubs appeared intermediate. Decreases in RGR due to water stress were analysed in terms of the relative contribution of the leaf mass ratio (LMR), SLA and the net assimilation rate (NAR). Pooling all species, the decrease in RGR caused by water deficit was mainly explained by decreases in SLA. However, this general pattern was strongly dependent of growth form. Thus, in the woody perennial plants, the decrease in RGR was accompanied by a three-fold decrease in NAR which, however, increased in perennial herbs. SLA increased with decreasing water supply in woody perennial plants, and decreased in woody semi-deciduous shrubs and perennial herbs. Finally, decreases in LMR partly explained decreases in RGR in perennial herbs and woody perennial shrubs. This different response of the different growth forms may reflect differences in seedling adaptation and surviving strategies to drought periods.  相似文献   

7.
民勤沙区几种荒漠植物群落的现实生态位研究   总被引:7,自引:1,他引:6  
民勤沙区属于典型的干旱荒漠气候,植被以灌木荒漠为主,盖度一般只有5%~15%.植物群落内生态位宽度悬殊,植物种之间的生态位相似比例很小.生态位宽度和生态位相似比例小是受制于干旱荒漠生境条件的结果,是干旱荒漠生态环境中稀疏荒漠植物的主要特征之一.植物的现实生态位宽度与年际降水量关系密切,在地貌、土壤颗粒、土壤水分、土壤养分等影响因子中,土壤水分是主导因子.当地地下水位深20 m左右,植物无法利用,植物种之间对资源的竞争主要表现为对水分资源的竞争,降水资源是植物种之间竞争的关键资源.同一种植物在不同群落中的生态位宽度变幅较大,不同群落内部植物种竞争关系的差异是由物种的生态位和由相对稳定的地貌、土壤条件以及随年际变动的降水条件共同作用的结果.群落中的优势种植物的生态位最宽,当优势种生态位减小时,一年生短命植物往往会进入群落中.荒漠植物的冠层单一,以冠幅占样方面积比作为植物的特征值计算其生态位特征值比较准确可靠.  相似文献   

8.
The Chilean fog-free Pacific coastal desert, one of the driest desertic regions of the world, is undergoing rapid rates of desertification as a result of intensive agriculture, overgrazing and mining. There is an urgent need to document the mycorrhizal status of Chilean plants, and the role of the symbiosis in rehabilitation and preservation of species diversity. Here we present one of the first reports on the mycorrhizal status of annual and perennial herbs and shrubs from this region. Plants were collected during 1991 when rainfall was close to or above the annual average, providing the opportunity to asses several rare plant species. The plants examined included endemic species and endangered and rare geophytes. More than 90% of 38 species (19 families) were found to form exclusively arbuscular mycorrhizal fungi associations. Six species of mycorrhizal fungi were isolated from the root zones of plants sampled, four of which are undescribed.  相似文献   

9.
利用协方差分析、曲线回归拟合及典范对应分析(CCA),研究了地形因子对桂西南喀斯特森林地表植物多样性及不同生长型地表植物分布格局的影响.结果表明: 共调查到152种地表植物,其中,蕨类植物37种、草本44种、藤本9种、灌木62种;协方差分析显示,海拔与地表植物个体数和丰富度显著相关,坡向对地表植物丰富度具有显著影响;地表植物的个体数和丰富度与海拔梯度存在显著的非线性相关性;CCA分析显示,坡向对蕨类植物的分布格局影响显著,坡度对草本、藤本和灌木的分布格局影响显著.蕨类植物对坡向引起的水热条件改变响应更为敏感,坡度对土壤水分、养分的作用大于高程,是影响本区域草本、藤本和灌木3种地表植物分布的主要地形因子.  相似文献   

10.
荒漠草原中间锦鸡儿冠层截留特征   总被引:2,自引:1,他引:1  
田娜  古君龙  杨新国  王磊  杨东东  苗翻  孟明 《生态学报》2019,39(14):5279-5287
以荒漠草原人工中间锦鸡儿(Caragana intermedia)为研究对象,利用2016-2017年监测获取的26次降雨事件,对比分析了两组灌丛(自然组和人工组)的冠层截留特征。结果表明:(1)试验期间共观测到有效降雨33次,总降雨量为251 mm,次平均降雨量和降雨强度分别为7.6 mm和1.14 mm/h,以雨量<2 mm,雨强<1 mm/h和降雨历时2-5 h的降雨出现次数最多;(2)自然组和人工组中间锦鸡儿平均截留量分别为1.11 mm和0.72 mm,平均截留率分别为24.81%和15.95%,两组灌丛截留存在极显著差异(P < 0.01);(3)在雨量级>15 mm时,自然组(4.57%,CV=73.38%)和人工组(5.25%,CV=51.96%)平均截留率变异性相差最大;(4)自然组和人工组截留量与降雨量,降雨历时和降雨强度之间的关系可以用幂函数描述,截留率与三者的关系均用指数函数描述较好。在降雨特征相同的情况下,灌丛形态特征是影响中间锦鸡儿冠层截留的关键因素。  相似文献   

11.
研究降雨变化对荒漠优势植物形态特征、空间点格局及空间关联性的影响有助于预测荒漠生态系统对全球气候变化的响应.以乌兰布和沙漠典型荒漠植物唐古特白刺和油蒿为研究对象,进行了连续10年的模拟增雨试验,运用Programita软件,采用Ripley K函数和Monte Carlo随机模拟方法,对长期模拟增雨条件下两种植物形态特征、空间格局及空间关联性进行研究.结果表明: 不同增雨处理下唐古特白刺和油蒿植株的数量、高度、平均冠幅和基径均存在显著差异,增雨处理的唐古特白刺和油蒿植株数量、高度、平均冠幅和基径均显著大于对照,并随着增雨量的增大而增大.当增雨量小于72 mm时,白刺枝条具有明显的聚集分布趋势;当增雨量大于72 mm后,随着增雨量的增大,白刺枝条表现出聚集强度明显降低的趋势.油蒿植株随着增雨量的增加空间分布格局表现为随机分布-聚集分布-随机分布.就空间关联性而言,对照处理下唐古特白刺枝条与油蒿之间表现为负关联,随着增雨量的增加两者呈现无关联或正关联,当增雨量达到144 mm时,空间关联由负关联向正关联转变.未来降雨增加条件下,土壤水分明显改善,两种荒漠植物对水分的竞争减弱,更有利于白刺和油蒿的共存生长.  相似文献   

12.
古尔班通古特沙漠南部植物多样性及群落分类   总被引:4,自引:0,他引:4  
张荣  刘彤 《生态学报》2012,32(19):6056-6066
采用分层取样的方法,以1000m2/样地为最小观测面积,对古尔班通古特沙漠南部61样地植物多样性进行了调查。发现92个物种,隶属于22科71属,单种科、单种属多,区系优势现象明显。草本植物占总物种数的81.5%,短命植物占43.5%,对物种丰富度和盖度的空间变化起决定作用。属的区系成分分析表明地中海、西亚至中亚分布型成分占大多数,具有典型的地中海旱生植物区系分布特征。总物种数,草本物种数,短命植物物种数与纬度显著负相关,与经度和海拔显著正相关。从南到北,总盖度、草本盖度和短命植物的盖度显著下降,灌木的盖度则增加,从西到东,总盖度、草本盖度和短命植物的盖度显著增加,而灌木的盖度则减少。采用多元回归树(Multivariate regression trees,MRT)方法,根据纬度、土壤pH值和海拔,将61样地分为4个群落。结合降水在古尔班通古特沙漠由西到东,由南到北梯度变化所导致的物种多样性的变化,推测如果未来降水持续增加,古尔班通古特沙漠草本植物的优势将更加明显。  相似文献   

13.
14.
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (P N) values were 23.27 and 32.92 μmol(CO2) m−2 s−1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (g s) values of 0.47 and 0.39 mol(H2O) m−2 s−1. The P N of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate.  相似文献   

15.
《农业工程》2013,33(3):172-177
Under the global warming conditions, great attention has been paid to the effects of precipitation on ecophysiological characteristics in desert plants. Nitraria tangutorum is one of the dominant shrubs distributes in desert outside Minqin oasis, Gansu Province. The artificial simulated rainfall experiments were carried out in four consecutive years from 2008 to 2011, in an attempt to understand the mechanisms of the photosynthetic response in desert plant to the variation of future precipitation pattern. The water and photosynthetic physiological characteristics of leaves in N. tangutorum were examined from July 24 to 26 in 2011 under different simulated rainfall increase gradients (increased 0%, 25%, 50%, 75% and 100% of mean annual precipitation, respectively). We measured leaf traits that could reflect both leaf water status (e.g., leaf water content and leaf water potential) and photosynthetic physiology (e.g., maximum net photosynthetic rate). The results showed that leaf water content and leaf water potential of N. tangutorum increased with increasing rainfall. Leaf water content and leaf water potential of N. tangutorum in the 100% increased rainfall treatment were significantly greater by 8.51% and 12.07% than the control (0% increased rainfall treatment). But leaf dry matter content and specific leaf weight gradually decreased with increasing rainfall. Leaf dry matter content and specific leaf weight in the 100% increased rainfall treatment were significantly lower by 6.92% and 25.93% than the control. Leaf maximum net photosynthetic rate (Amax), apparent quantum yield (AQY) and light saturation point (LSP) increased with increasing rainfall, while light compensation point (LCP) gradually decreased with increasing rainfall. AQY in the 100% increased rainfall treatment was significantly greater by 70.00% than the control. However, there were no significant differences in LSP and LCP between different treatments. Amax, transpiration rate (Tr), stomatal conductance (Gs) in the 100% increased rainfall treatment were significantly greater by 81.91%, 166.07% and 110.47% than the control, respectively. On the contrary, water use efficiency (WUE) in the 100% increased rainfall treatment was significantly less 48.28% than the control. There were no significant differences in intercellular CO2 concentration (Ci) and stomatal limitation value (Ls) between different treatments. The correlation analysis showed that there were significantly positive correlations between leaf water content, leaf water potential, Tr and Gs. However, there were significantly negative correlations between leaf dry matter content, leaf specific mass and Tr, Gs, leaf water content and leaf water potential, suggesting that leaf gas exchanges were regulated by leaf water status. Therefore, N. tangutorum could adapt to the tendency of future increasing precipitation by the coordination of water physiology and photosynthesis.  相似文献   

16.
《植物生态学报》2016,40(7):723
Aims Patchily distributed biological soil crusts and shrubs is one of the main vegetation cover types in Gurbantünggüt desert. The existence of shrubs in desert areas serves not only as a shelter for small animals, but also a good living condition for cryptogams and some herbs. Syntrichia caninervis, a dominant moss species in Gurbantünggüt desert, is patchily distributed under shrub canopy and open spaces between vascular plants. To our knowledge, the impacts of the removal of shrub canopy on physiological and biochemical characteristics of S. caninervis during the winter is still unknown.
Methods We simulated grazing of animals on Ephedra distachya at various rates (shrubs left intact, 50% shrubs removed, and shrubs removed completely) by cutting different percent of above-ground shoots of E. distachya. The shoot water content, chlorophyll fluorescence, proline content, soluble sugar content, soluble protein content, malonyldialdehyde (MDA) content, peroxidase (POD) and superoxide dismutase (SOD) activity were compared.
Important findings The results show that, as for proline and soluble sugar contents of tested S. caninervis, there were no significant differences among three treatments of shrub canopy. However, the MDA content, and the activities of POD, SOD, CAT were significantly higher than nature shrubs in snow cover periods. During snow-melting periods, soil moisture and temperature did not served as limiting factors on the growth of S. caninervis. The soluble sugar content, and the activities of POD, CAT with shrub removal were significantly higher than shrubs left intact. This may indicate that the decline of the function of maintaining constant soil temperature due to shrub canopy increased the damage of temperature on moss plants. In addition, as for physiological and biochemical characteristics, there were no significant differences between two treatments of 50% shrub canopy and shrub canopy left intact. In snow covered periods and snow melting periods, the MDA content, the activities of POD, SOD and CAT of S. caninervis under shrub canopy removed completely were significantly higher than that of 50% shrub canopy and shrub canopy left intact, except for soluble protein content. The duration of chlorophyll fluorescence activity of S. caninervis growing in habitats with shrubs removed completely was significantly shorter than that of S. caninervis growing in habitats of 50% shrub canopy and shrub canopy left intact. This result indicated that the removal of shrubs may increase the UV-B radiation and weaken the “moisture island effects” developed by the existence of shrub canopy.  相似文献   

17.
灌丛和生物土壤结皮镶嵌分布是古尔班通古特沙漠一种重要的地表覆被类型, 灌丛的存在不仅为小型动物提供了庇护场所, 也为隐花植物及部分草本植物创造了良好的生存条件。然而在初冬时期移除灌丛是否会影响这些隐花植物的越冬及生长还不得而知。该研究通过模拟放牧及鼠害, 移除50%双穗麻黄(Ephedra distachya)灌丛、移除全部双穗麻黄灌丛及自然对照, 测定齿肋赤藓(Syntrichia caninervis)植株脯氨酸、可溶性糖和可溶性蛋白含量, 以及丙二醛(MDA)含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT) 3种抗氧化酶活性, 并测定原位光化学效率, 探讨初冬灌丛丧失对荒漠藓类植物越冬的影响。结果表明, 在积雪期3种处理下齿肋赤藓的游离脯氨酸和可溶性糖含量之间差异并不显著, 但去灌丛后其MDA含量、POD、SOD和CAT 3种抗氧化酶活性均显著高于自然灌丛下齿肋赤藓的相关生理指标。即使是在融雪期, 去灌丛下齿肋赤藓的可溶性糖含量及POD和CAT活性仍显著高于自然灌丛, 而可溶性蛋白明显较低, 这可能是由于灌丛的丧失造成的温度波动加剧了冬季低温对藓类植物的伤害。灌丛的部分移除(50%)对齿肋赤藓的生理生化特性影响不显著, 就积雪融化期叶绿素荧光活性持续时间而言, 与自然灌丛和移除50%灌丛相比, 完全移除灌丛的齿肋赤藓植株叶绿素荧光活性持续时间显著缩短。这可能是由于灌丛移除导致其UV-B辐射增加及“湿岛效应”消失所致, UV-B辐射的增加加剧了对植物的伤害, 而春季融雪期保水能力的下降也是其叶绿素荧光活性时间缩短的重要原因。  相似文献   

18.
Seasonal carbon and water relations were compared among seven tree or shrub wash woodland species in the winter rainfall desert of the Richtersveld National Park, South Africa. Plants were generally aseasonal with respect to gas exchange, but responsive to rainfall events with respect to water relations and phenology. Relatively narrow annual ranges in potential evapotranspiration due to the maritime influence could explain why these plants respond more to fluctuations in water acquisition potential than to evaporative demand. Two species were summer-deciduous, but one of them (Ozoroa concolor) responded to aseasonal summer rainfall by leafing out and flowering. These two species had high shoot xylem water potentials when in leaf. All other species were sclerophyllous evergreens with low water potentials, particularly the shallow-rooted shrub Zygophyllum prismatocarpum, and Boscia albitrunca which may have a different rooting pattern to the other phreatophytes. The latter species was also unique due to its high leaf nitrogen contents, photosynthetic rates and stomatal conductances, despite very low leaf water potentials. Leaf stable carbon isotope composition C13C) varied between species (–22 to –27), but was lower than the mean for arid regions worldwide. The values indicated moderately high levels of water use efficiency, but a less conservative strategy in two species, including Boscia albitrunca. The affinities of these species to summer rainfall biomes, their apparent decline in the western arid regions in recent geological history following aridification, and their absence southwards in the winter rainfall regions, suggest that these wash species rely on sporadic summer rainfall events to some extent. They may be at risk if predicted increases in temperature and changes in rainfall patterns alter their effective moisture availability.  相似文献   

19.
Tolerance to the effects of drought and subsequent recovery after a rainfall appear to be critical for plants in the karst regions of southwestern China, which are characterized by frequent but temporary drought events. This study investigated the effects of drought intensity and repetition on photosynthesis and photoprotection mechanisms of karst plants during successive cycles of drought and subsequent recovery. Leaf water potential, gas exchange, chlorophyll fluorescence and several associated metabolic processes were studied in six plant species, including Pyracantha fortuneana (PF), Rosa cymosa (RC), Broussonetia papyrifera (BP), Cinnamomum bodinieri (CB), Platycarya longipes (PL) and Pteroceltis tatarinowii (PT) during three cycles of drought treatments at four different intensities. The four treatments were: well‐watered, mild drought, moderate drought and severe drought, each followed by rewatering events. We found that limitations to CO2 diffusion accounted for photosynthetic declines under mild and moderate drought treatments, while metabolic limitations dominated the response to severe drought. Repetition of drought did not intensify the impairment of photosynthetic metabolism regardless of drought intensity in the six species studied. Repetition of severe drought delayed the photosynthetic recoveries in PF, RC and CB after rewatering. Repetition of drought increased thermal dissipation in PF, CB and BP, as well as superoxide dismutase (EC 1.15.1.1) activity in RC and CB. Enhanced photosynthetic performance, measured as increased intrinsic water use efficiency, photosynthetic performance per unit of photosynthetic pigment, maintenance of high thermal dissipation and high ratios of carotenoids to chlorophylls, was observed during the rewatering periods. This enhanced photosynthetic performance allowed for the complete recovery of the six karst species from successive intermittent drought events.  相似文献   

20.
吴林  苏延桂  张元明 《生态学报》2012,32(13):4103-4113
水分是控制干旱区生态过程的重要环境因素,在水分受限制的生态系统中,降水通过改变土壤的干湿状态直接控制地下生物过程。生物结皮作为干旱区主要的地表覆盖物,能利用空气中有限的水分进行光合作用,其自身的碳交换是干旱区土壤碳通量的重要组成部分。通过模拟0(对照)、2、5 mm和15 mm 4个降水梯度,利用红外气体分析仪,对古尔班通古特沙漠中部生物结皮以及裸地表观土壤碳通量进行测量,探讨不同强度降水条件下生物结皮对表观土壤碳通量的影响,结果表明:(1)降水增加了生物结皮表观土壤碳释放量,2、5 mm和15 mm 3种降水处理累积碳释放量分别是对照的151.48%、274.97%、306.44%,并且随着降水后时间的延长,表观土壤碳通量逐渐减小直至达到降水前的水平;(2)生物结皮与裸地的表观土壤碳通量对降水的响应不同,对照和最大降水量下,生物结皮表观土壤碳通量大于裸地,但是2 mm和5 mm降水后,生物结皮表观土壤碳通量小于裸地,并且二者在2 mm降水时差异显著(P<0.05),而在其它降水处理下无显著差异;(3)连续两次降水事件,活性碳在初级降水后的大量释放使得二次降水后释放量下降,其中裸地碳释放量下降速率与降水强度正相关。本研究说明,在探求荒漠地区土壤碳交换对降水的响应规律时,应该考虑生物结皮的影响以及连续降水事件的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号