首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size of the repair patch produced by E. coli DNA polymerase (Pol I) following the removal of a pyrimidine dimer from DNA in response to the nicking activity of T4 endonuclease (T4 endo V) was determined. A 48-bp DNA containing a pyrimidine dimer at a defined location was labelled in the damaged strand and incubated with T4 endo V and E. coli endonuclease IV. Subsequently, DNA synthesis by DNA Pol I was carried out in the presence of four dNTPs, ATP and DNA ligase. Analysis of the reaction products on a sequencing gel revealed a ladder of only 4-oligonucleotides, 1-4 nucleotides greater in length than the fragment generated by the combined nicking activities of T4 endo V and E. coli endonuclease IV. Thus we conclude that the in vitro repair patch size of T4 endo V is 4 nucleotides and that in some cases the repaired DNA is not ligated.  相似文献   

2.
The ability to remove ultraviolet (UV)-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 UV-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.  相似文献   

3.
M Liuzzi  M Weinfeld  M C Paterson 《Biochemistry》1987,26(12):3315-3321
The UV endonucleases [endodeoxyribonuclease (pyrimidine dimer), EC 3.1.25.1] from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. We have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV- (4 kJ/m2, 254 nm) treated, [3H]thymine-labeled poly(dA).poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical- (5 kJ/m2, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. Our data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. Our results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.  相似文献   

4.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

5.
D R Dowd  R S Lloyd 《Biochemistry》1989,28(22):8699-8705
Endonuclease V, a pyrimidine dimer specific endonuclease in T4 bacteriophage, is able to scan DNA, recognize pyrimidine dimer photoproducts produced by exposure to ultraviolet light, and effectively incise DNA through a two-step mechanism at the damaged bases. The interaction of endonuclease V with nontarget DNA is thought to occur via electrostatic interactions between basic amino acids and the acidic phosphate DNA backbone. Arginine-3 was chosen as a potential candidate for involvement in this protein-nontarget DNA interaction and was extensively mutated to assess its role. The mutations include changes to Asp, Glu, Leu, and Lys and deleting it from the enzyme. Deletion of Arg-3 resulted in an enzyme that retained marginal levels of AP specificity, but no other detectable activity. Charge reversal to Glu-3 and Asp-3 results in proteins that exhibit AP-specific nicking and low levels of dimer-specific nicking. These enzymes are incapable of affecting cellular survival of repair-deficient Escherichia coli after irradiation. Mutations of Arg-3 to Lys-3 or Leu-3 also are unable to complement repair-deficient E. coli. However, these two proteins do exhibit a substantial level of in vitro dimer- and AP-specific nicking. The mechanism by which the Leu-3 and Lys-3 mutant enzymes locate pyrimidine dimers within a population of heavily irradiated plasmid DNA molecules appears to be significantly different from that for the wild-type enzyme. The wild-type endonuclease V processively incises all dimers on an individual plasmid prior to dissociation from that plasmid and subsequent reassociation with other plasmids, yet neither of these mutants exhibits any of the characteristics of this processive nicking activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ability of UV endonuclease beta of Deinococcus radiodurans to act as a pyrimidine dimer DNA glycosylase was investigated. Cell-free extracts of D. radiodurans exhibiting UV endonuclease beta activity failed to generate incisions in irradiated DNA that liberated free-thymine residues upon photoreversal with 254-nm light. This is in marked contrast to the pyrimidine dimer UV glycosylase of Micrococcus luteus that does liberate such residues. The result suggests that UV endonuclease beta incises DNA by true endonuclease action.  相似文献   

7.
The purification and properties of an ultraviolet (UV) repair endonuclease are described. The enzyme is induced by infection of cells of Escherichia coli with phage T4 and is missing from extracts of cells infected with the UV-sensitive and excision-defective mutant T4V(1). The enzyme attacks UV-irradiated deoxyribonucleic acid (DNA) containing either hydroxymethylcytosine or cytosine, but does not affect native DNA. The specific substrate in UV-irradiated DNA appears to be pyrimidine dimer sites. The purified enzyme alone does not excise pyrimidine dimers from UV-irradiated DNA. However, dimer excision does occur in the presence of the purified endonuclease plus crude extract of cells infected with the mutant T4V(1).  相似文献   

8.
Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or "sliding" mechanism on non-target DNA as opposed to a distributive or "random hit" mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.  相似文献   

9.
Unlike its phage T4 counterpart (also known as endonuclease V), Micrococcus luteus UV endonuclease (pyrimidine dimer DNA glycosylase/apurinic-apyrimidinic endonuclease) has suffered from lack of genetic evidence to implicate it in the promotion of UV survival of the cell, i.e., mutants with its deficiency are no more UV-sensitive than the wild type. On the assumption that the contribution of UV endonuclease is obscured by the presence of a homolog of Escherichia coli UvrABC endonuclease, which has recently been identified in this bacterium, survival studies were carried out in its absence. With 254-nm UV irradiation, which generates not only pyrimidine dimers but also 6-4 photoproducts as lethal lesions, a double mutant defective in both UV endonuclease and the Uvr homolog was shown to be more sensitive than a single mutant defective only in the latter, with a dose reduction factor of approximately 2 at the survival level of 37%. Furthermore, molecular photosensitization, which produces only pyrimidine dimers, revealed an even greater difference in sensitivity, the dose reduction factor being about 3.4. These results indicate that the contribution to cell survival of UV endonuclease, an enzyme specific for pyrimidine dimers, is manifest if the backup by the Uvr homolog is absent.  相似文献   

10.
Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.  相似文献   

11.
Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases.  相似文献   

12.
We performed experiments to determine whether the phage T4-induced UV endonuclease activity is a single protein containing both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities. The UV endonuclease activity is induced by the denV gene and codes for the glycosylase activity. We obtained several kinds of evidence that the protein containing the glycosylase activity also contains the apyrimidinic endonuclease activity. After chromatography on DEAE-cellulose, the two activities copurified during phosphocellulose chromatography and Sephadex G-100 chromatography, with a constant ratio of activities across the activity peaks. On Sephadex G-100 columns the molecular weights of the two activities agreed within 2,500 or less. When an extract of cells infected with the T4 V1 mutant was purified in exactly the same way as an extract of cells infected with T4 V1+, neither glycosylase nor apyrimidinic endonuclease activity was detected in the normal elution position of the T4 UV endonuclease activity. The glycosylase and apyrimidinic endonuclease activities were induced with similar kinetics, which were characteristic of immediate early rather than delayed early enzymes. This correlated well with the presumed major role of these activities in repairing thymine dimers in parental DNA before DNA replication begins. Finally, glycosylase and apyrimidinic endonuclease activities were lost in parallel during incubation of the enzyme at 46 degree C. Our results indicated that both of these enzyme activities are contained in the same enzyme molecule and, probably, in the same polypeptide.  相似文献   

13.
The action of the dimer-specific endonuclease V of bacteriophage T4 was studied on UV-irradiated, covalently-closed circular DNa. Form I ColE1 DNA preparations containing average dimer frequencies ranging from 2.5 to 35 pyrimidine dimers per molecule were treated with T4 endonuclease V and analysed by agarose gel electrophoresis. At all dimer frequencies examined, the production of form III DNA was linear with time and the double-strand scissions were made randomly on the ColE1 DNA genome. Since the observed fraction of form III DNA increased with increasing dimer frequency but the initial rate of loss of form I decreased with increasing dimer frequency, it was postulated that multiple single-strand scissions could be produced in a subset of the DNA population while some DNA molecules contained no scissions. When DNA containing an average of 25 dimers per circle was incubated with limiting enzyme concentrations, scissions appeared at most if not all dimmer sites in some molecules before additional strand scissions were produced in other DNA molecules. The results support a processive model for the interaction of T4 endonuclease V with UV-irradiated DNA.  相似文献   

14.
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.  相似文献   

15.
The interaction between endonuclease V, the cyclobutane pyrimidine dimer-specific N-glycosylase/abasic lyase from bacteriophage T4, and DNA was investigated by DNase I footprinting methods. The catalytically inactive mutant E23Q was found to interact with a smaller region of DNA at the abasic site analog, tetrahydrofuran, than at a thymine dimer site. Like the wild-type enzyme, the mutant contacted the DNA substrates primarily on the strand opposite the damage. The various complexes examined by footprinting techniques represent distinct points along the catalytic pathway of endonuclease V: before catalysis at a dimer, after N-glycosylase action but before abasic lyase action, and before catalysis at an abasic site. The differences between the footprints of the mutant and wild-type enzymes on both DNA substrates likely represent subtly different conformations within these complexes.  相似文献   

16.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

17.
We have compared video and photographic methods for calculating the number of ultraviolet radiation (uv)-induced pyrimidine dimers in DNA from the bacteriophage T7 exposed to uv (0 to 800 J/m2) from an FS40 sunlamp. DNA was incubated with a pyrimidine dimer-specific Micrococcus luteus uv endonuclease, subjected to alkaline agarose gel electrophoresis, neutralized, and stained with ethidium bromide, and the DNA fluorescence was recorded either with a video camera or on photographic film. The slopes of the dose-response curves for the number of uv-endonuclease-sensitive sites per 10(3) bases (pyrimidine dimers) was 1.2 (+/- 0.1) X 10(-4) uv-endonuclease-sensitive sites per J/m2 for the video analysis and 1.3 (+/- 0.04) X 10(-4) uv-endonuclease-sensitive sites per J/m2 for the photographic analysis. Results for pyrimidine dimer determination by either method were statistically comparable.  相似文献   

18.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

19.
C Nickell  M A Prince  R S Lloyd 《Biochemistry》1992,31(17):4189-4198
Facilitated one-dimensional diffusion is a general mechanism utilized by several DNA-interactive proteins as they search for their target sites within large domains of nontarget DNA. T4 endonuclease V is a protein which scans DNA in a nonspecifically bound state and processively incises DNA at ultraviolet (UV)-induced pyrimidine dimer sites. An electrostatic contribution to this mechanism of target location has been established. Previous studies indicate that a decrease in the affinity of endonuclease V for nontarget DNA results in a decreased ability to scan DNA and a concomitant decrease in the ability to enhance UV survival in repair-deficient Escherichia coli. This study was designed to question the contrasting effect of an increase in the affinity of endonuclease V for nontarget DNA. With this as a goal, a gradient of increasingly basic amino acid content was created along a proposed endonuclease V-nontarget DNA interface. This incremental increase in positive charge correlated with the stepwise enhancement of nontarget DNA binding, yet inversely correlated with enhanced UV survival in repair-deficient E. coli. Further analysis suggests that the observed reduction in UV survival is consistent with the hypothesis that enhanced nontarget DNA affinity results in reduced pyrimidine dimer-specific recognition and/or binding. The net effect is a reduction in the efficiency of pyrimidine dimer incision.  相似文献   

20.
We have developed an alkaline agarose gel method for quantitating single strand breaks in nanogram quantities of nonradioactive DNA. After electrophoresis together with molecular length standards, the DNA is neutralized, stained with ethidium bromide, photographed, and the density profiles recorded with a computer controlled scanner. The median lengths, number average molecular lengths, and length average molecular lengths of the DNAs can be computed by using the mobilities of the molecular length standards. The frequency of single strand breaks can then be determined by comparison of the corresponding average molecular lengths of DNAs treated and not treated with single strand break-inducing agents (radiation, chemicals, or lesion-specific endonuclease). Single strand break yields (induced at pyrimidine dimer sites in uv-irradiated human fibroblasts DNA by the dimer-specific endonuclease from Micrococcus luteus) from our method agree with values obtained for the same DNAs from alkaline sucrose gradient analysis. The method has been used to determine pyrimidine dimer yields in DNA from biopsies of human skin irradiated in situ. It will be especially useful in determining the frequency of single strand breaks (or lesions convertible to single strand breaks by specific cleaving reagents or enzymes) in small quantities of DNA from cells or tissues not amenable to radioactive labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号