首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The remarkable processivity of cellular replicative DNA polymerases derive their tight grip to DNA from a ring-shaped protein that encircles DNA and tethers the polymerase to the chromosome. The crystal structures of prototypical 'sliding clamps' of prokaryotes (beta subunit) and eukaryotes (PCNA) are ring shaped proteins for encircling DNA. Although beta is a dimer and PCNA is a trimer, their structures are nearly superimposable. Even though they are not hexamers, the sliding clamps have a pseudo 6-fold symmetry resulting from three globular domains comprising each beta monomer and two domains comprising each PCNA monomer. These domains have the same chain fold and are nearly identical in three-dimensions. The amino acid sequences of 11 beta and 13 PCNA proteins from different organisms have been aligned and studied to gain further insight into the relation between the structure and function of these sliding clamps. Furthermore, a putative embryonic form of PCNA is the size of beta and thus may encircle DNA as a dimer like the prokaryotic clamps.  相似文献   

2.
SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. The loading model proposes that SpoIIIE/FtsK oligomerize exclusively on SpoIIIE recognition sequence/orienting polar sequences (SRS/KOPS) to accomplish directional DNA translocation, whereas the target search and activation mechanism proposes that pre-assembled SpoIIIE/FtsK hexamers bind to non-specific DNA, reach SRS/KOPS by diffusion/3d hopping and activate at SRS/KOPS. Here, we employ single-molecule total internal reflection imaging, atomic force and electron microscopies and ensemble biochemical methods to test these predictions and obtain further insight into the SpoIIIE–DNA mechanism of interaction. First, we find that SpoIIIE binds DNA as a homo-hexamer with neither ATP binding nor hydrolysis affecting the binding mechanism or affinity. Second, we show that hexameric SpoIIIE directly binds to double-stranded DNA without requiring the presence of SRS or free DNA ends. Finally, we find that SpoIIIE hexamers can show open and closed conformations in solution, with open-ring conformations most likely resembling a state poised to load to non-specific, double-stranded DNA. These results suggest how SpoIIIE and related ring-shaped motors may be split open to bind topologically closed DNA.  相似文献   

3.
Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain gamma. The crystal structure of three FtsKgamma domains bound to 8 bp KOPS DNA demonstrates how three gamma domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three gamma domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA.  相似文献   

4.
VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.  相似文献   

5.
FtsK translocates dsDNA directionally at >5 kb/s, even under strong forces. In vivo, the action of FtsK at the bacterial division septum is required to complete the final stages of chromosome unlinking and segregation. Despite the availability of translocase structures, the mechanism by which ATP hydrolysis is coupled to DNA translocation is not understood. Here, we use covalently linked translocase subunits to gain insight into the DNA translocation mechanism. Covalent trimers of wild‐type subunits dimerized efficiently to form hexamers with high translocation activity and an ability to activate XerCD‐dif chromosome unlinking. Covalent trimers with a catalytic mutation in the central subunit formed hexamers with two mutated subunits that had robust ATPase activity. They showed wild‐type translocation velocity in single‐molecule experiments, activated translocation‐dependent chromosome unlinking, but had an impaired ability to displace either a triplex oligonucleotide, or streptavidin linked to biotin‐DNA, during translocation along DNA. This separation of translocation velocity and ability to displace roadblocks is more consistent with a sequential escort mechanism than stochastic, hand‐off, or concerted mechanisms.  相似文献   

6.
Faithful coordination between bacterial cell division and chromosome segregation in rod‐shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C‐terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.  相似文献   

7.
Some double-stranded DNA bacteriophages consist of DNA packaged in a proteinaceous capsid. The capsid has a DNA-enclosing outer shell (head) attached to an external projection (tail). At the head-tail junction is a ring of subunits (connector) that has either six or twelve-fold rotational symmetry, and is joined to the head at an axis of the head's five-fold rotational symmetry. The head is made of subunits in either an icosahedral array or an array consisting of two icosahedral hemispheres separated by a cylinder of subunits. During infection of a host, the head with connector is assembled as a procapsid that subsequently packages DNA and joins a tail. The mechanism for producing two symmetries at the head-tail junction has in the past been an unsolved problem. The observation that the connector of bacteriophage T7 does not nucleate assembly of the outer shell of T7's icosahedral procapsid (P. Serwer and R. H. Watson [1982] J. Virol. 42, 595-601) places a constraint on a solution for the above problem. To solve the above problem for icosahedral procapsids, it is proposed here that: (a) assembly of the outer shell of procapsids is nucleated by a six-membered ring of hexameric aggregates of the major outer shell protein, (b) the connector is assembled in the center of this ring, (c) one of the hexamers dissociates from the ring, creating a five-membered ring and forcing the connector to the inside of the outer shell. A related mechanism is proposed for nucleation of the elongated procapsid of bacteriophage T4.  相似文献   

8.
Bacteriophage PRD1 is unusual, with an internal lipid membrane, but has striking resemblances to adenovirus that include receptor binding spikes. The PRD1 vertex complex contains P2, a 590 residue monomer that binds to receptors on antibiotic-resistant strains of E. coli and so is the functional counterpart to adenovirus fiber. P2 structures from two crystal forms, at 2.2 and 2.4 A resolution, reveal an elongated club-shaped molecule with a novel beta propeller "head" showing pseudo-6-fold symmetry. An extended loop with another novel fold forms a long "tail" containing a protruding proline-rich "fin." The head and fin structures are well suited to recognition and attachment, and the tail is likely to trigger the processes of vertex disassembly, membrane tube formation, and subsequent DNA injection.  相似文献   

9.
The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.  相似文献   

10.
Mutations in the insulin gene can impair proinsulin folding and cause diabetes mellitus. Although crystal structures of insulin dimers and hexamers are well established, proinsulin is refractory to crystallization. Although an NMR structure of an engineered proinsulin monomer has been reported, structures of the wild-type monomer and hexamer remain undetermined. We have utilized hydroxyl radical footprinting and molecular modeling to characterize these structures. Differences between the footprints of insulin and proinsulin, defining a "shadow" of the connecting (C) domain, were employed to refine the model. Our results demonstrate that in its monomeric form, (i) proinsulin contains a native-like insulin moiety and (ii) the C-domain footprint resides within an adjoining segment (residues B23-B29) that is accessible to modification in insulin but not proinsulin. Corresponding oxidation rates were observed within core insulin moieties of insulin and proinsulin hexamers, suggesting that the proinsulin hexamer retains an A/B structure similar to that of insulin. Further similarities in rates of oxidation between the respective C-domains of proinsulin monomers and hexamers suggest that this loop in each case flexibly projects from an outer surface. Although dimerization or hexamer assembly would not be impaired, an ensemble of predicted C-domain positions would block hexamer-hexamer stacking as visualized in classical crystal lattices. We anticipate that protein footprinting in combination with modeling, as illustrated here, will enable comparative studies of diabetes-associated mutant proinsulins and their aberrant modes of aggregation.  相似文献   

11.
Escherichia coli FtsK is a multifunctional protein that couples cell division and chromosome segregation. Its N-terminal transmembrane domain (FtsK(N)) is essential for septum formation, whereas its C-terminal domain (FtsK(C)) is required for chromosome dimer resolution by XerCD-dif site-specific recombination. FtsK(C) is an ATP-dependent DNA translocase. In vitro and in vivo data point to a dual role for this domain in chromosome dimer resolution (i) to directly activate recombination by XerCD-dif and (ii) to bring recombination sites together and/or to clear DNA from the closing septum. FtsK(N) and FtsK(C) are separated by a long linker region (FtsK(L)) of unknown function that is highly divergent between bacterial species. Here, we analysed the in vivo effects of deletions of FtsK(L) and/or of FtsK(C), of swaps of these domains with their Haemophilus influenzae counterparts and of a point mutation that inactivates the walker A motif of FtsK(C). Phenotypic characterization of the mutants indicated a role for FtsK(L) in cell division. More importantly, even though Xer recombination activation and DNA mobilization both rely on the ATPase activity of FtsK(C), mutants were found that can perform only one or the other of these two functions, which allowed their separation in vivo for the first time.  相似文献   

12.
Bacterial cell division and the septal ring   总被引:16,自引:0,他引:16  
Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.  相似文献   

13.
14.
Chromosome dimers, which frequently form in Escherichia coli, are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific site on the chromosome, dif, together with the cell division protein FtsK. The C-terminal domain of FtsK (FtsK(C)) is a DNA translocase implicated in helping synapsis of the dif sites and in locally promoting XerD strand exchanges after synapse formation. Here we show that FtsK(C) ATPase activity is directly involved in the local activation of Xer recombination at dif, by using an intermolecular recombination assay that prevents significant DNA translocation, and we confirm that FtsK acts before Holliday junction formation. We show that activation only occurs with a DNA segment adjacent to the XerD-binding site of dif. Only one such DNA extension is required. Taken together, our data suggest that FtsK needs to contact the XerD recombinase to switch its activity on using ATP hydrolysis.  相似文献   

15.
The crystal structure of the light-harvesting phycobiliprotein, c-phycocyanin from the thermophilic cyanobacterium Synechochoccus vulcanus has been determined by molecular replacement to 2.5 A resolution. The crystal belongs to space group R32 with cell parameters a=b=188.43 A, c=61.28 A, alpha=beta=90 degrees, gamma=120 degrees, with one (alphabeta) monomer in the asymmetric unit. The structure has been refined to a crystallographic R factor of 20.2 % (R-free factor is 24.4 %), for all data to 2.5 A. The crystals were grown from phycocyanin (alphabeta)(3) trimers that form (alphabeta)(6) hexamers in the crystals, in a fashion similar to other phycocyanins. Comparison of the primary, tertiary and quaternary structures of the S. vulcanus phycocyanin structure with phycocyanins from both the mesophilic Fremyella diplsiphon and the thermophilic Mastigocladus laminosus were performed. We show that each level of assembly of oligomeric phycocyanin, which leads to the formation of the phycobilisome structure, can be stabilized in thermophilic organisms by amino acid residue substitutions. Each substitution can form additional ionic interactions at critical positions of each association interface. In addition, a significant shift in the position of ring D of the B155 phycocyanobilin cofactor in the S. vulcanus phycocyanin, enables the formation of important polar interactions at both the (alphabeta) monomer and (alphabeta)(6) hexamer association interfaces.  相似文献   

16.
Simian Virus 40 replication requires only one viral protein, the Large T antigen (T-ag), which acts as both an initiator of replication and as a replicative helicase (reviewed in ). We used electron microscopy to generate a three-dimensional reconstruction of the T-ag hexameric ring in the presence and absence of a synthetic replication fork to locate the T-ag domains, to examine structural changes in the T-ag hexamer associated with DNA binding, and to analyze the formation of double hexamers on and off DNA. We found that binding DNA to the T-ag hexamer induces large conformational changes in the N- and C-terminal domains of T-ag. Additionally, we observed a significant increase in density throughout the central channel of the hexameric ring upon DNA binding. We conclude that conformational changes in the T-ag hexamer are required to accommodate DNA and that the mode of DNA binding may be similar to that suggested for some other ring helicases. We also identified two conformations of T-ag double hexamers formed in the presence of forked DNA: with N-terminal hexamer-hexamer contacts, similar to those formed on origin DNA, or with C-terminal contacts, which are unlike any T-ag double hexamers reported previously.  相似文献   

17.
We have studied the stimulation of topoisomerase IV (Topo IV) by the C-terminal AAA+ domain of FtsK. These two proteins combine to assure proper chromosome segregation in the cell. Stimulation of Topo IV activity was dependent on the chirality of the DNA substrate: FtsK stimulated decatenation of catenated DNA and relaxation of positively supercoiled [(+)ve sc] DNA, but inhibited relaxation of negatively supercoiled [(−)ve sc] DNA. The DNA translocation activity of FtsK was not required for stimulation, but was required for inhibition. DNA chirality did not affect any of the activities of FtsK, suggesting that FtsK possesses an inherent Topo IV stimulatory activity that is presumably mediated by protein–protein interactions, the stability of Topo IV on the DNA substrate dictated the effect observed. Inhibition occurs because FtsK can strip distributively acting topoisomerase off (−)ve scDNA, but not from either (+)ve scDNA or catenated DNA where the enzyme acts processively. Our analyses suggest that FtsK increases the efficiency of trapping of the transfer segment of DNA during the catalytic cycle of the topoisomerase.  相似文献   

18.
19.
The crystal structure of allophycocyanin from red algae Porphyra yezoensis (APC-PY) at 2.2-A resolution has been determined by the molecular replacement method. The crystal belongs to space group R32 with cell parameters a = b = 105.3 A, c = 189.4 A, alpha = beta = 90 degrees, gamma = 120 degrees. After several cycles of refinement using program X-PLOR and model building based on the electron density map, the crystallographic R-factor converged to 19.3% (R-free factor is 26.9%) in the range of 10.0 to 2.2 A. The r.m.s. deviations of bond length and angles are 0.015 A and 2.9 degrees, respectively. In the crystal, two APC-PY trimers associate face to face into a hexamer. The assembly of two trimers within the hexamer is similar to that of C-phycocyanin (C-PC) and R-phycoerythrin (R-PE) hexamers, but the assembly tightness of the two trimers to the hexamer is not so high as that in C-PC and R-PE hexamers. The chromophore-protein interactions and possible pathway of energy transfer were discussed. Phycocyanobilin 1alpha84 of APC-PY forms 5 hydrogen bonds with 3 residues in subunit 2beta of another monomer. In R-PE and C-PC, chromophore 1alpha84 only forms 1 hydrogen bond with 2beta77 residue in subunit 2beta. This result may support and explain great spectrum difference exists between APC trimer and monomer.  相似文献   

20.
FtsK and topoisomerase (Topo) IV are both involved in chromosome segregation in Escherichia coli. The former protein resides at the septal ring and is required for resolution of chromosome dimers. The latter protein is the chromosomal decatenase. We have demonstrated recently that Topo IV activity is concentrated at the septal proximal regions of the nucleoids late in the cell cycle. Here we demonstrate that FtsK and Topo IV physically and functionally interact. Topo IV was recovered in immunoprecipitates of FtsK. Two-hybrid analysis and immunoblotting showed that this interaction was mediated by the ParC subunit of Topo IV. In addition, we show that the C-terminal motor domain of FtsK stimulates the decatenation activity of Topo IV but not that of DNA gyrase, the other type II topoisomerase in the cell. Topo IV and FtsK appear to cooperate in the cell as well. Rescue of a parE temperature-sensitive mutation by overproduction of DnaX, which leads to stabilization of the temperature-sensitive Topo IV, required both the C-terminal domain of FtsK and dif, whereas rescue by overproduction of Topo III, which bypasses Topo IV function, did not. The interaction between FtsK and Topo IV may provide a means for concentrating the latter enzyme at the cell center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号