首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang Y  Dagne G 《Biometrics》2012,68(3):943-953
Summary It is a common practice to analyze complex longitudinal data using semiparametric nonlinear mixed-effects (SNLME) models with a normal distribution. Normality assumption of model errors may unrealistically obscure important features of subject variations. To partially explain between- and within-subject variations, covariates are usually introduced in such models, but some covariates may often be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. Inferential procedures can be complicated dramatically when data with skewness, missing values, and measurement error are observed. In the literature, there has been considerable interest in accommodating either skewness, incompleteness or covariate measurement error in such models, but there has been relatively little study concerning all three features simultaneously. In this article, our objective is to address the simultaneous impact of skewness, missingness, and covariate measurement error by jointly modeling the response and covariate processes based on a flexible Bayesian SNLME model. The method is illustrated using a real AIDS data set to compare potential models with various scenarios and different distribution specifications.  相似文献   

2.
Chen B  Zhou XH 《Biometrics》2011,67(3):830-842
Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.  相似文献   

3.
We discuss the analysis of growth curve data with missing or incomplete information. The approach is to fit subject-specific models and then to carry out an analysis in terms of the estimated parameters. This achieves reduction of data and eliminates the need for special considerations for subjects with missing data. Although there is no perfect substitute for complete data, our approach provides a way to handle missing data using a straightforward application of well-known statistical methodology.  相似文献   

4.

Background  

Microarray technology has become popular for gene expression profiling, and many analysis tools have been developed for data interpretation. Most of these tools require complete data, but measurement values are often missing A way to overcome the problem of incomplete data is to impute the missing data before analysis. Many imputation methods have been suggested, some na?ve and other more sophisticated taking into account correlation in data. However, these methods are binary in the sense that each spot is considered either missing or present. Hence, they are depending on a cutoff separating poor spots from good spots. We suggest a different approach in which a continuous spot quality weight is built into the imputation methods, allowing for smooth imputations of all spots to larger or lesser degree.  相似文献   

5.
A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.  相似文献   

6.
This paper highlights the consequences of incomplete observations in the analysis of longitudinal binary data, in particular non-monotone missing data patterns. Sensitivity analysis is advocated and a method is proposed based on a log-linear model. A sensitivity parameter that represents the relationship between the response mechanism and the missing data mechanism is introduced. It is shown that although this parameter is identifiable, its estimation is highly questionable. A far better approach is to consider a range of plausible values and to estimate the parameters of interest conditionally upon each value of the sensitivity parameter. This allows us to assess the sensitivity of study's conclusion to assumptions regarding the missing data mechanism. The method is applied to a randomized clinical trial comparing the efficacy of two treatment regimens in patients with persistent asthma.  相似文献   

7.
A latent-class mixture model for incomplete longitudinal Gaussian data   总被引:2,自引:1,他引:1  
Summary .   In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in practice. While the possibility of data missing not at random (MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are not well suited for the primary analysis in clinical trials. Rather than either forgetting about or blindly shifting to an MNAR framework, the optimal place for MNAR analyses is within a sensitivity-analysis context. One such route for sensitivity analysis is to consider, next to selection models, pattern-mixture models or shared-parameter models. The latter can also be extended to a latent-class mixture model, the approach taken in this article. The performance of the so-obtained flexible model is assessed through simulations and the model is applied to data from a depression trial.  相似文献   

8.
Marginal methods have been widely used for the analysis of longitudinal ordinal and categorical data. These models do not require full parametric assumptions on the joint distribution of repeated response measurements but only specify the marginal or even association structures. However, inference results obtained from these methods often incur serious bias when variables are subject to error. In this paper, we tackle the problem that misclassification exists in both response and categorical covariate variables. We develop a marginal method for misclassification adjustment, which utilizes second‐order estimating functions and a functional modeling approach, and can yield consistent estimates and valid inference for mean and association parameters. We propose a two‐stage estimation approach for cases in which validation data are available. Our simulation studies show good performance of the proposed method under a variety of settings. Although the proposed method is phrased to data with a longitudinal design, it also applies to correlated data arising from clustered and family studies, in which association parameters may be of scientific interest. The proposed method is applied to analyze a dataset from the Framingham Heart Study as an illustration.  相似文献   

9.
Liu M  Taylor JM  Belin TR 《Biometrics》2000,56(4):1157-1163
This paper outlines a multiple imputation method for handling missing data in designed longitudinal studies. A random coefficients model is developed to accommodate incomplete multivariate continuous longitudinal data. Multivariate repeated measures are jointly modeled; specifically, an i.i.d. normal model is assumed for time-independent variables and a hierarchical random coefficients model is assumed for time-dependent variables in a regression model conditional on the time-independent variables and time, with heterogeneous error variances across variables and time points. Gibbs sampling is used to draw model parameters and for imputations of missing observations. An application to data from a study of startle reactions illustrates the model. A simulation study compares the multiple imputation procedure to the weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) that can be used to address similar data structures.  相似文献   

10.
Hopke PK  Liu C  Rubin DB 《Biometrics》2001,57(1):22-33
Many chemical and environmental data sets are complicated by the existence of fully missing values or censored values known to lie below detection thresholds. For example, week-long samples of airborne particulate matter were obtained at Alert, NWT, Canada, between 1980 and 1991, where some of the concentrations of 24 particulate constituents were coarsened in the sense of being either fully missing or below detection limits. To facilitate scientific analysis, it is appealing to create complete data by filling in missing values so that standard complete-data methods can be applied. We briefly review commonly used strategies for handling missing values and focus on the multiple-imputation approach, which generally leads to valid inferences when faced with missing data. Three statistical models are developed for multiply imputing the missing values of airborne particulate matter. We expect that these models are useful for creating multiple imputations in a variety of incomplete multivariate time series data sets.  相似文献   

11.
Multiple imputation has become a widely accepted technique to deal with the problem of incomplete data. Typically, imputation of missing values and the statistical analysis are performed separately. Therefore, the imputation model has to be consistent with the analysis model. If the data are analyzed with a mixture model, the parameter estimates are usually obtained iteratively. Thus, if the data are missing not at random, parameter estimation and treatment of missingness should be combined. We solve both problems by simultaneously imputing values using the data augmentation method and estimating parameters using the EM algorithm. This iterative procedure ensures that the missing values are properly imputed given the current parameter estimates. Properties of the parameter estimates were investigated in a simulation study. The results are illustrated using data from the National Health and Nutrition Examination Survey.  相似文献   

12.
MOTIVATION: Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. RESULTS: The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. AVAILABILITY: The CMVE software is available upon request from the authors.  相似文献   

13.
Shin Y  Raudenbush SW 《Biometrics》2007,63(4):1262-1268
The development of model-based methods for incomplete data has been a seminal contribution to statistical practice. Under the assumption of ignorable missingness, one estimates the joint distribution of the complete data for thetainTheta from the incomplete or observed data y(obs). Many interesting models involve one-to-one transformations of theta. For example, with y(i) approximately N(mu, Sigma) for i= 1, ... , n and theta= (mu, Sigma), an ordinary least squares (OLS) regression model is a one-to-one transformation of theta. Inferences based on such a transformation are equivalent to inferences based on OLS using data multiply imputed from f(y(mis) | y(obs), theta) for missing y(mis). Thus, identification of theta from y(obs) is equivalent to identification of the regression model. In this article, we consider a model for two-level data with continuous outcomes where the observations within each cluster are dependent. The parameters of the hierarchical linear model (HLM) of interest, however, lie in a subspace of Theta in general. This identification of the joint distribution overidentifies the HLM. We show how to characterize the joint distribution so that its parameters are a one-to-one transformation of the parameters of the HLM. This leads to efficient estimation of the HLM from incomplete data using either the transformation method or the method of multiple imputation. The approach allows outcomes and covariates to be missing at either of the two levels, and the HLM of interest can involve the regression of any subset of variables on a disjoint subset of variables conceived as covariates.  相似文献   

14.
Chen HY  Xie H  Qian Y 《Biometrics》2011,67(3):799-809
Multiple imputation is a practically useful approach to handling incompletely observed data in statistical analysis. Parameter estimation and inference based on imputed full data have been made easy by Rubin's rule for result combination. However, creating proper imputation that accommodates flexible models for statistical analysis in practice can be very challenging. We propose an imputation framework that uses conditional semiparametric odds ratio models to impute the missing values. The proposed imputation framework is more flexible and robust than the imputation approach based on the normal model. It is a compatible framework in comparison to the approach based on fully conditionally specified models. The proposed algorithms for multiple imputation through the Markov chain Monte Carlo sampling approach can be straightforwardly carried out. Simulation studies demonstrate that the proposed approach performs better than existing, commonly used imputation approaches. The proposed approach is applied to imputing missing values in bone fracture data.  相似文献   

15.
The presence of missing values in gel-based proteomics data represents a real challenge if an objective statistical analysis is pursued. Different methods to handle missing values were evaluated and their influence is discussed on the selection of important proteins through multivariate techniques. The evaluated methods consisted of directly dealing with them during the multivariate analysis with the nonlinear estimation by iterative partial least squares (NIPALS) algorithm or imputing them by using either k-nearest neighbor or Bayesian principal component analysis (BPCA) before carrying out the multivariate analysis. These techniques were applied to data obtained from gels stained with classical postrunning dyes and from DIGE gels. Before applying the multivariate techniques, the normality and homoscedasticity assumptions on which parametric tests are based on were tested in order to perform a sound statistical analysis. From the three tested methods to handle missing values in our datasets, BPCA imputation of missing values showed to be the most consistent method.  相似文献   

16.
It is not uncommon for biological anthropologists to analyze incomplete bioarcheological or forensic skeleton specimens. As many quantitative multivariate analyses cannot handle incomplete data, missing data imputation or estimation is a common preprocessing practice for such data. Using William W. Howells' Craniometric Data Set and the Goldman Osteometric Data Set, we evaluated the performance of multiple popular statistical methods for imputing missing metric measurements. Results indicated that multiple imputation methods outperformed single imputation methods, such as Bayesian principal component analysis (BPCA). Multiple imputation with Bayesian linear regression implemented in the R package norm2, the Expectation–Maximization (EM) with Bootstrapping algorithm implemented in Amelia, and the Predictive Mean Matching (PMM) method and several of the derivative linear regression models implemented in mice, perform well regarding accuracy, robustness, and speed. Based on the findings of this study, we suggest a practical procedure for choosing appropriate imputation methods.  相似文献   

17.
The problem of missing data is common in all fields of science. Various methods of estimating missing values in a dataset exist, such as deletion of cases, insertion of sample mean, and linear regression. Each approach presents problems inherent in the method itself or in the nature of the pattern of missing data. We report a method that (1) is more general in application and (2) provides better estimates than traditional approaches, such as one-step regression. The model is general in that it may be applied to singular matrices, such as small datasets or those that contain dummy or index variables. The strength of the model is that it builds a regression equation iteratively, using a bootstrap method. The precision of the regressed estimates of a variable increases as regressed estimates of the predictor variables improve. We illustrate this method with a set of measurements of European Upper Paleolithic and Mesolithic human postcranial remains, as well as a set of primate anthropometric data. First, simulation tests using the primate data set involved randomly turning 20% of the values to "missing". In each case, the first iteration produced significantly better estimates than other estimating techniques. Second, we applied our method to the incomplete set of human postcranial measurements. MISDAT estimates always perform better than replacement of missing data by means and better than classical multiple regression. As with classical multiple regression, MISDAT performs when squared multiple correlation values approach the reliability of the measurement to be estimated, e.g., above about 0. 8.  相似文献   

18.
Missing inaction: the dangers of ignoring missing data   总被引:2,自引:0,他引:2  
The most common approach to dealing with missing data is to delete cases containing missing observations. However, this approach reduces statistical power and increases estimation bias. A recent study shows how estimates of heritability and selection can be biased when the 'invisible fraction' (missing data due to mortality) is ignored, thus demonstrating the dangers of neglecting missing data in ecology and evolution. We highlight recent advances in the procedures of handling missing data and their relevance and applicability.  相似文献   

19.
A Bayesian missing value estimation method for gene expression profile data   总被引:13,自引:0,他引:13  
MOTIVATION: Gene expression profile analyses have been used in numerous studies covering a broad range of areas in biology. When unreliable measurements are excluded, missing values are introduced in gene expression profiles. Although existing multivariate analysis methods have difficulty with the treatment of missing values, this problem has received little attention. There are many options for dealing with missing values, each of which reaches drastically different results. Ignoring missing values is the simplest method and is frequently applied. This approach, however, has its flaws. In this article, we propose an estimation method for missing values, which is based on Bayesian principal component analysis (BPCA). Although the methodology that a probabilistic model and latent variables are estimated simultaneously within the framework of Bayes inference is not new in principle, actual BPCA implementation that makes it possible to estimate arbitrary missing variables is new in terms of statistical methodology. RESULTS: When applied to DNA microarray data from various experimental conditions, the BPCA method exhibited markedly better estimation ability than other recently proposed methods, such as singular value decomposition and K-nearest neighbors. While the estimation performance of existing methods depends on model parameters whose determination is difficult, our BPCA method is free from this difficulty. Accordingly, the BPCA method provides accurate and convenient estimation for missing values. AVAILABILITY: The software is available at http://hawaii.aist-nara.ac.jp/~shige-o/tools/.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号