首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic oligochaetes are well known for their ability to resist prolonged periods of anoxia. In fact, the observed mortality is more likely to result from laboratory stress (unnatural sediment, starvation, accumulation of toxic substances) than from lack of oxygen per se. Lumbriculus variegatus feeds under anoxia at 6°C at a low rate and survives more than 40 days. A sudden transfer into anoxic water, however, results in a cessation of defaecation before the gut is half emptied, whereas the gut is completely emptied under aerobic conditions within 8–10 hours (11°C).Anoxic heat dissipation as measured by direct calorimetry is reduced by up to 80% relative to aerobic rates. The basal rate of oxygen uptake is independent of PO2 above 3 kPa (15% air saturation), but the active rate shows a high degree of oxygen conformity. Whereas the theoretical oxycaloric equivalent yields an accurate estimation of aerobic heat dissipation in Lumbriculus, anoxic catabolism of glycogen explains only up to 60% of the directly measured rates of anoxic heat dissipation in Lumbriculus and Tubifex. Since unknown bioenergetic processes may be important under anoxia, direct calorimetry is required to assess total rates of energy expenditure in anoxic oligochaetes.  相似文献   

2.
Summary The interrelationships of carbohydrate and amino acid metabolism during anaerobiosis were investigated in the ventricle of the intertidal oyster,Crassostrea gigas. While the ventricle accumulates alanine and succinate in a 21 ratio during anoxia, these end products appear to arise from different precursors. Thus glucose-14C is metabolized mainly to alanine-14C (55% of glucose carbon appears in alanineversus 3% in succinate) by the anoxic ventriclein vitro while succinate-14C is the principle end product of aspartate-14C catabolism. Glutamate-14C is poorly metabolized by the anoxic ventricle, and correspondingly, while ventricular aspartate concentrations drop during anoxia, those of other amino acids do not. A metabolic scheme coupling glucose and aspartate catabolism in this facultative anaerobe is proposed. The detection of a third, as yet incompletely identified, anaerobic end product produced by the ventricle is reported.  相似文献   

3.
The rate of metabolism of laboratory reared Chironomus riparius was monitored by direct calorimetry over the entire life cycle from egg to adult stage. The metabolic response of the fourth instar larva to decreasing oxygen concentrations and anoxia was also measured. Normoxic measurements were carried out at 20°C and the hypoxic-anoxic experiments at 10°C. In larvae with body sizes ranging from 0.0028 to 0.645 mg ash-free dry mass (afdm), the rate of heat dissipation was related to body mass by a power function, with a mass exponent of 0.71±0.02 corresponding to an exponent of -0.29 for the relationship between mass-specific metabolic rate and body mass. However, the allometric equations applicable to larvae would not predict the metabolic rates of eggs, pupae and adults. Single egg batches used in the experiments consisted of 354±90 eggs, the individual egg with a mass of 0.99±0.01 g (mean±SD). The mass-specific rate of heat dissipation of the egg (13.7±1.8 W mg-1 afdm) was considerably lower than that of the first and second instar larvae (44–53 W mg-1) but equal to that of fourth instar larvae (13.1±3.9 W mg-1). Heat dissipation by a pupa shortly before adult emergence was high (14.8±1.8 W mg-1), probably due to high metabolism during metamorphosis. Emergence of the adult in the calorimeter was indicated by a short but intense burst of heat. The newly emerged imago had a ca. 20–35% higher metabolic rate than the pupa. In response to reduced O2 partial pressure the fourth instar larva of C. riparius displayed metabolic regulation. In continuously declining oxygen partial pressure, the fourth instar larva maintained its aerobic energy metabolism (4.2 W mg-1) with only a small decrease down to 0.8 kPa, corresponding to an oxygen concentration of 0.42 mg O2l-1 H2O. Below this critical oxygen concentration (Pc), the rate of heat dissipation decreased rapidly down to the anoxic level which was only 14–17% of the normoxic level. The high relative reduction of metabolic rate under anoxia gives a wrong impression of short-term tolerance of C. riparius to anoxia. The absolute energetic costs of C. riparius associated with anaerobic energy metabolism (0.64±0.11 W mg-1) are almost 6 times higher than those of more anoxia tolerant invertebrates such as sphaeriid bivalves.  相似文献   

4.
Encysted embryos of the brine shrimp, Artemia franciscana, exhibit extraordinary longevity when exposed to continuous anoxia. To explore the metabolic basis of this ability, the post-anoxic respiration of embryos exposed to anoxia for periods exceeding 1 year was measured. Since anoxic metabolism might result in the accumulation of metabolic end products, an O2 debt would be expected. Contrary to that expectation, post-anoxic embryos exhibited a marked depression in respiration rate whether embryos were hydrated under anoxic conditions or were exposed to a previous aerobic incubation and then placed under anoxia. These results, and those of previous studies, suggest that extended anoxia may bring the metabolism of these embryos to a reversible standstill.  相似文献   

5.
Summary The energy flow of the anaerobic metabolism of glodfish at 20°C during hypoxia and anoxia was studied by simultaneous direct and indirect calorimetry. During anoxia the heat production as determined by direct calorimetry (180 J · h–1 · kg–0.85) is reduced to 30% of the normoxic level (570 J · h–1 · kg–0.85), which is the same reduction as found previously. The patterns of substrate utilization are compared with previous results, where the anoxic pattern was established by simultaneous calorimetry without carbon dioxide measurements. The present results, which do include carbon dioxide measurements, show the same pattern: carbohydrate and protein as substrates and carbon dioxide, ethanol and fat as end products. The pattern of substrate utilization at low oxygen levels is a combination of the anoxic pattern with an aerobic component. During anoxia only 5% of the metabolizable energy is used for energy metabolism. Of the remaining part (metabolizable energy for production) 60% is converted into ethanol and 40% into fat. At two hypoxia levels the distribution of the metabolizable energy for production into ethanol and fat is the same.  相似文献   

6.
In this study, we compared survivorship, heat dissipation and biochemical features of anaerobiosis of two tiger beetle species (Coleoptera: Cicindelidae) exposed to anoxia. One species commonly experiences environmental immersion from rainfall and snowmelt (Cicindela togata), and the habitat of the other (Amblycheila cylindriformis) is not prone to flooding. The ancestral genus, A. cylindriformis, survives anoxia for only 2 days at 25 °C. In response to anoxia, these larvae immediately lose locomotory abilities, tissue concentrations of ATP fall precipitously within 12 h, and significant amounts of lactate are quickly produced. In contrast, C. togata larvae tolerate anoxia for 5 days. Heat dissipation is downregulated to a greater degree than that seen in A. cylindriformis (3.4% versus 14% of standard normoxic rate, respectively), the ability for locomotion is maintained and normoxic levels of ATP are defended for at least 24 h. Lactate is not accumulated until well into anoxic bout, and significant amounts of alanine are also produced. This study provides evidence that tiger beetles differ in physiological responses to anoxia, and that these differences are correlated with flooding risk and with species distribution. Accepted: 1 March 2000  相似文献   

7.
Abstract A current explanation of the mechanism of flooding injury to roots suggests that oxygen deficiency depresses the supply of respirable carbohydrates sufficiently to inhibit fermentation. However, even though it has been shown that phloem transport of assimilate is sharply reduced to anaerobic roots, inhibition of assimilate metabolism has also been suggested to be an important factor. This study examines these hypotheses by relating assimilate supply and metabolic activity in anoxic roots of alfalfa (Medicago sativa L.), a flood-intolerant species, and birdsfoot trefoil (Lotus corniculatus L.), a flood-tolerant plant. Roots were made anoxic (severe O2 deficiency) for 2, 4 or 6 d and shoots were labelled with 14CO2. Assimilate transport to the roots and metabolism to structural components were significantly decreased in both species in response to anoxia. Trefoil exhibited significantly greater 14C incorporation into the residue fraction at 4 d anoxia than did alfalfa, and this was consistent with the greater flooding tolerance of trefoil. When assimilate supply to O2-deficient roots was decreased by shoot shading, shoot fresh weight was reduced by both anoxia and light treatments. Root-soluble sugars were significantly decreased by shading but were greatly increased in response to anoxia. Root starch concentration also increased under anoxia. Root K+ concentration was reduced by anoxia only. The energy status (ATP/ADP) of roots was significantly decreased by shading; however, anoxia reduced the energy status only in unshaded plants. The data indicate that carbohydrate supply to anaerobic roots does not appear to be a limiting factor in the metabolic response of alfalfa roots. Alternatively, metabolism of assimilate in anoxic roots may be an important determinant of survival.  相似文献   

8.
The signal events of 1 mM Ce4+ (Ce(NH4)2(NO3)6)-induced apoptosis of cultured Taxus cuspidata cells were investigated. The percentage of apoptotic cells increased from 0.82% to 51.32% within 6 days. Caspase-3-like protease activity became notable during the second day of Ce4+-treatment, and the maximum activity was 5-fold higher than that of control cells at the fourth day. When the experiment system was pretreated with acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) at 100 M, caspase-3-like activity resulted in distinct inhibition by 70% and 77.3% after 3 and 4 days of induction. Furthermore, 100 M Ac-DEVD-CHO partially reduced the apoptotic cells by 58.6% and 60.8% at day 4 and 5 respectively. Ce4+ induced superoxide anions (O2·–) transient burst, and the first peak appeared at around 3.7–4 h, the second appeared at about 7 h. Both O2·– burst and cell apoptosis were effectively suppressed by application of diphenyl iodonium (NADPH oxidase inhibitor). Inhibition of O2·– production attenuated caspase-3-like activation by 49% and 53.6% during day 3 and 4 respectively. In addition, a total of 15 protein spots changed in response to caspase-3-like protease activation were identified by two-dimensional gel electrophoresis. These results suggest that Ce4+ of 1 mM induces apoptosis in suspension cultures of T. cuspidata through O2·– burst as well as caspase-3-like protease activation. The burst of O2·– exerts its activity as an upstream of caspase-3-like activation. Our results also implicate that other signal pathways independent of an O2·– burst possibly participate in mediating caspase-3-like protease activation.  相似文献   

9.
J. G. Carman 《Planta》1988,175(3):417-424
The effects of O2, growth-regulators and desiccation on callus growth and somatic embryo (embryoid) development were investigated in cultures of immature embryos of two lines of Triticum aestivum L. Callus and embryoid formation were induced on media that contained N6-furfurylamin-opurine (kinetin) and either 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-o-anisic acid, either with or without abscisic acid (ABA). Cultures containing differentiated embryoids were then exposed to high concentrations of both ABA and indole-3-acetic acid, after which samples were desiccated to approx. 10% tissue moisture. Incubating cultures in 3.2 mmol·l-1 O2 (approx. 9%, low-O2) increased embryoid formation sixfold in one wheat line and nearly threefold in another. In the former line low-O2 caused the formation of mostly embryogenic callus. Low-O2 also decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids. Including 1.9 mol·l-1 ABA in the callus-induction medium reduced germination of immature embryos and reduced the incidence of embryoids with visible abnormalities. Despite the improved morphology, significantly fewer of the embryoids produced on ABA-containing medium germinated. Desiccation significantly enhanced germination of these embryoids as well as those produced on ABA-free medium.Abbreviations ABA abscisic acid - DPA days post-anthesis - dicamba 3,6-dichloro-o-anisic acid - 2,4-D 2,4-dichlorophen-oxyacetic acid - FW fresh weight - IAA indole-3-acetic acid - Kin kinetin (N6-furfurylaminopurine) - MS Murashige and Skoog (1962) medium Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3565  相似文献   

10.
S. J. Neill  R. Horgan  A. F. Rees 《Planta》1987,171(3):358-364
Seed development was investigated in kernels of developing wild-type and viviparous (vp-1) Zea mays L. Embryos and endosperm of wild-type kernels began to dehydrate at approx. 35 d after pollination (DAP); viviparous embryos did not desiccate but accumulated fresh weight via coleoptile growth in the caryopses. Concentrations of endogenous abscisic acid (ABA) in the embryo were relatively high early in development, being approx. 150 ng·g-1 fresh weight at 20 DAP. The ABA content declined thereafter, falling to approx. 50 ng·g-1 at 30 DAP. Endosperm ABA content was always low, being less than 20 ng·g-1. There were no differences between wild-type and vp-1 tissues. Immature kernels did not germinate when removed from the ear until late in development. The ability to germinate was correlated with decreasing moisture content in the endosperm at the time of removal; premature drying of immature kernels resulted in greatly increased germination following imbibition. Excised embryos germinated precociously when removed from the endosperm as early as 25 DAP. Such germination could be prevented by treatment with 10-5 M ABA or by lowering the solute potential (s) of the medium with 0.3 M mannitol. Treatment of excised embryos with ABA led to internal ABA concentrations comparable to those in embryos in which germination was inhibited in situ. Mannitol treatment did not have this effect, although water-deficit stress of excised embryos resulted in substantial ABA production. Germinated vp-1 embryos were less sensitive to growth inhibition by ABA or mannitol than germinating wild-type embryos. The vp-1 seedlings were not wilty and their transpiration rates were reduced in response to ABA or water shortage.Abbreviations and symbols ABA abscisic acid - DAP days after pollination - FW fresh weight - vp-1 viviparous genotype - s solute potential  相似文献   

11.
We quantified metabolic power consumption as a function of wind speed in the presence and absence of simulated solar radiation in rock squirrels, Spermophilus variegatus, a diurnal rodent inhabiting arid regions of Mexico and the western United States. In the absence of solar radiation, metabolic rate increased 2.2-fold as wind speed increased from 0.25 to 4.0 m·s-1. Whole-body thermal resistance declined 56% as wind speed increased over this range, indicating that body insulation in this species is much more sensitive to wind disruption than in other mammals. In the presence of 950 W·m-2 simulated solar radiation, metabolic rate increased 2.3-fold as wind speed was elevated from 0.25 to 4.0 m·s-1. Solar heat gain, calculated as the reduction in metabolic heat production associated with the addition of solar radiation, increased with wind speed from 1.26 mW·g-1 at 0.25 m·s-1 to 2.92 mW·g-1 at 4.0 m·s-1. This increase is opposite to theoretical expectations. Both the unexpected increase in solar heat gain at elevated wind speeds and the large-scale reduction of coat insulation suggests that assumptions often used in heat-transfer analyses of animals can produce important errors.Abbreviations absorptivity of coat to solar radiation - kinematic viscosity of air (mm2·s-1) - reflectivity of coat to solar radiation - a r B expected at zero wind speed (s·m-1) - A P projected surface area of animal on plane perpendicular to solar beam (cm2) - A SKIN skin surface area (cm2) - b Coefficient describing change in r B with change in square-root of wind speed (s1.5·m1.5) - d hair diameter (m) - d characteristic dimension of animal (m) - D H thermal diffusivity of air (m2·s-1) - E evaporative heat loss (W·m-2) - I probability per unit coat depth that photon will strike hair - k constant equalling 1200 J·m-3·°C-1 - l C coat depth m) - l H hair length (m) - M metabolic rate (W·m-2) - n density of hairs of skin (m-2) - Q A solar heat gain to animal (W·m-2) - Q I solar irradiance intercepted by animal (W·m-2) - RQ respiratory quotient - r A thermal resistance of boundary layer (s·m-1) - r B whole-body thermal resistance (s·m-1) - r E thermal resistance between animal surface and environment s·m-1) - r R radiative resistance (s·m-1) - r S sum of r B and r E at 0.25 m·s-1 (s·m-1) - r T tissue thermal resistance s·m-1) - T AIR air temperature (°C) - T B body temperature (°C) - T E operative temperature of environment (°C) - T ES standard operative temperature of environment (°C) - u wind speed (m·s-1)  相似文献   

12.
Summary Rates of O2 uptake across isolated perfused skin of bullfrogs (Rana catesbeiana) were measured in relation to blood flow at three levels of ambient O2 tension: normoxia (O2 tension=152 torr), hypoxia (12% O2, 87 torr) and hyperoxia (42% O2, 306 torr). At bulk perfusion rates ranging from 3.4 to 10.1 l·cm-2·min-1, O2 uptake was positively correlated with hemoglobin delivery rate in both normoxia and hyperoxia, but was independent of delivery rate in hypoxia. Mean O2 uptake in normoxia was 3.8 nmol O2·cm-2·min-1 at a delivery rate of 9.8 nmol·cm-2·min-1 and 6.5 nmol O2·cm-2·min-1 at a delivery rate of 28.3 nmol·cm-2·min-1. At any given bulk perfusion rate, oxygen uptake averaged about 49% lower in hypoxia than in normoxia, decreasing in proportion to the reduction of O2 tension difference between medium and blood. In hyperoxia, O2 uptake did not increase proportionally with the difference in O2 tension between blood and medium, averaging only 50% higher at a 2.4-fold greater O2 tension difference. Cutaneous diffusing capacity for O2 averaged 0.041 nmol O2·cm-2·torr-1·min-1 during the first hour of perfusion in normoxia, and was not affected by reduction of ambient O2 tension. The results indicate that cutaneous O2 uptake in hypoxia is highly diffusion limited, and consequently, increases in cutaneous perfusion can not effectively compensate for reduction of ambient O2 tension. In hyperoxia, O2 uptake may be substantially perfusion limited because of reduced blood O2 capacitance at high O2 saturations.Abbreviations O2 capacitance - C Hb hemoglobin concentration - D diffusing capacity - PO2 medium-blood PO2 difference - Hb flow, hemoglobin delivery rate - Hepes N-[2-Hydroxyethyl]piperacine-N-[2 ethanesulfonic acid] - L diff extent of diffusion limitation - MO2 oxygen uptake rate - PO2 oxygen tension - S O2 saturation  相似文献   

13.
14.
15.
We have developed a reproducible system for efficient direct somatic embryogenesis from leaf and internodal explants of Paulownia elongata. The somatic embryos obtained were subsequently encapsulated as single embryos to produce synthetic seeds. Several plant growth regulators [6-benzylaminopurine, indole-3-acetic acid, -naphthaleneacetic acid, kinetin and thidiazuron (TDZ)] alone or in combination were tested for their capacity to induce somatic embryogenesis. The highest induction frequencies of somatic embryos were obtained on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 0.6% Phytagel, 500 mg l-1 casein hydrolysate and 10 mg l-1 TDZ (medium MS10). Somatic embryos were induced from leaf (69.8%) and internode (58.5%) explants on MS10 medium after 7 days. Subsequent withdrawal of TDZ from the induction medium resulted in the maturation and growth of the embryos into plantlets on MS basal media. The maturation frequency of somatic embryos from leaf and internodal explants was 50.8% and 45.8%, respectively. Subculturing of mature embryos led to their germination on the same medium with a germination frequency of 50.1% and 29.8% from leaf and internode explants, respectively. Somatic embryos obtained directly on leaf explants were used for encapsulation in liquid MS medium containing different concentrations of sodium alginate with a 30-min exposure to 50 mM CaCl2. A 3% sodium alginate concentration provided a uniform encapsulation of the embryos with survival and germination frequencies of 73.7% and 53.3%, respectively. Storage at 4°C for 30 days or 60 days significantly reduced the survival and complete germination frequencies of both encapsulated and non-encapsulated embryos relative to those of non-stored somatic embryos. However, the survival and germination rates of encapsulated embryos increased following storage at 4°C. After 30 days or 60 days of storage, the survival rates of encapsulated embryos were 67.8% and 53.5% and the germination frequencies were 43.2% and 32.4%, respectively. These systems could be useful for the rapid clonal propagation and dissemination of synthetic seed material of Paulownia elongata.Abbreviations BAP 6-Benzylaminopurine - IAA Indole-3-acetic acid - NAA -Naphthaleneacetic acid - TDZ ThidiazuronCommunicated by H. Lörz  相似文献   

16.
Summary The effects of environmental anoxia (24 h at 7°C in N2/CO bubbled water) on the maximal activities, selected kinetic properties, and isoelectric points of phosphofructokinase and pyruvate kinase were measured in eight tissues of the goldfish,Carassius auratus, in order to evaluate the role of possible covalent modification of enzymes in glycolytic rate control and metabolic depression during facultative anaerobiosis. Both enzymes showed modified kinetic properties as a result of anoxia in liver, kidney, brain, spleen, gill, and heart. Effects of anoxia on properties of pyruvate kinase included reducedV max, increased S0.5 for phosphoenolpyruvate, increasedK a for fructose-1,6-bisphosphate, and strongly reduced I50 for alanine; all these effects are consistent with an anoxia-induced phosphorylation of pyruvate kinase to produce a less active enzyme form. Anoxia-induced alterations in phosphofructokinase kinetics included tissue-specific changes in S0.5 for fructose-6-phosphate, Hill coefficient,K a values for fructose-2,6-bisphosphate, AMP, and NH 4 + , and I50 values for ATP and citrate, the direction of changes being generally consistent with the production of a less active enzyme form in the anoxic tissue. Enzymes from aerobic versus anoxic skeletal muscle (both red and white) did not differ in kinetic properties but anoxic enzyme forms had significantly different pI values than the corresponding aerobic forms. Enzyme phosphorylation-dephosphorylation as the basis of the anoxia-induced changes in the kinetic properties of PFK and PK was further tested in liver: treatment of the aerobic forms of both enzymes with cAMP dependent protein kinase altered enzyme kinetic properties to those typical of the anoxic enzymes while alkaline phosphatase treatment of the anoxic enzyme forms had the opposite effect. The data provide strong evidence that coordinated glycolytic rate control, as part of an overall metabolic rate depression during anoxia, is mediated via anoxia-induced covalent modification of regulatory enzymes.Abbreviations cAMP cyclic 35 adenosine monophosphate - F16P 2 fructose-1,6-bisphosphate - F26P 2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase (E.C. 2.7.1.11) - PK pyruvate kinase (E.C. 2.7.1.40) - PMSF phenylmethylsulfonyl fluoride  相似文献   

17.
The effects of anoxia (N2 atmosphere at 5 °C) or freezing (at-8 °C) exposure in vivo on the activities of five enzymes of carbohydrate metabolism were assessed in foot muscle and hepatopancreases of the marine periwinkle Littorina littorea. Changes in glycogen phosphorylase, glycogen synthetase, pyruvate kinase and pyruvate dehydrogenase under either stress were generally consistent with covalent modification of the enzymes to decrease enzyme activity and/or convert the enzyme to a less active form. However, no evidence for a similar covalent modification of phosphofructokinase was found. The metabolic effects of freezing and anoxia were generally similar, suggesting that a primary contributor to freezing survival is the implementation of anaerobic metabolism and metabolic arrest mechanisms that also promote anoxia survival in marine molluses. However, in hepatopancreas phosphorylase was activated and pyruvate kinase remained in two enzyme forms in freezing-exposed snails, contrary to the results for anoxic animals. Ion exchange chromatography on DE-52 Sephadex revealed the presence of two forms of pyruvate kinase in both tissues of control L. littorea, eluting at 30–50 mmol·1-1 KCl (peak I) or 90–110 mmol·1-1 KCl (peak II). Anoxia exposure converted pyruvate kinase in both tissues to the peak I form, as did freezing for foot muscle pyruvate kinase. Kinetic analysis showed that peak I pyruvate kinase had lower affinities for substrates, phosphoenolpyruvate and ADP, and was very strongly inhibited by l-alanine compared with the peak II enzyme. Peak I pyruvate kinase had an I 50 value for l-alanine of 0.38 mmol·1-1, whereas peak II pyruvate kinase was unaffected by l-alanine evenat 40 mmol·1-1. In vitro incubation of extracts from control foot muscle under conditions promoting phosphorylation or dephosphorylation identified the peak I and II forms as the low and high phosphate forms, respectively. This result for L. littorea pyruvate kinase was highly unusual and contrary to the typical effect of anoxia on pyruvate kinase in marine molluscs which is to stimulate the phosphorylation of pyruvate kinase and, thereby, convert the enzyme to a less active form.Abbreviations AABS p-(p-aminophenylazo)benzene sulphonic acid - F2, 6P fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - GP glycogen phosphorylase - GS glycogen synthase - I 50 inhibitor concentration reducing enzyme velocity by 50% - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenopyruvate - PFK phosphofructokinase - PK pyruvate kinase - SW sea water - F a air temperature - TCA trichloroacetic acid - UDPG uridine-diphosphate glucose - WW wet weight  相似文献   

18.
J. Weiner 《Oecologia》1987,72(2):297-302
Summary Physiological limits to energy budgets were estimated in Djungarian hamsters (Phodopus sungorus) using food balance and respirometric methods. The summer acclimatized, reproductively inactive hamsters could balance their energy budget at-2° C, assimilating 91.1 kJ·animal-1· day-1 after gradual cold acclimation, whereas non-acclimated hamsters showed negative energy balance assimilating only 54.4 kJ·animal-1·day-1. At the same ambient temperature, multiparous females (although neither pregnant nor lactating at the time) maintained positive energy balance assimilating 81.6 kJ·animal-1·day-1. Hamsters are capable of rapid adjustments of their maximum assimilation rates to meet their current energy demands, but only up to the value of about 3.5xBMR. It is concluded, that the actual energy budgets of small mammals keep, all the time, fairly near the upper physiological limit, with body reserves ready to buffer short-term oscillations.  相似文献   

19.
The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 l of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octopamine injected into the haemolymph of flying locusts. Octopamine and fructose 2,6-bisphosphate may act as signals to stimulate the oxidation of carbohydrate and to integrate muscle performance and metabolism. This mechanism appears particularly significant in the initial stage of flight when carbohydrates are the main fuel.Abbreviations F2,6P2 fructose 2,6-bisphosphate - F6P fructose 6-phosphate - PFK1 6-phosphofructokinase (EC 2.7.1.11) - P i inorganic phosphate - PP i -PFK pyrophosphate dependent fructose 6-phosphate phosphotransferase (EC 2.7.1.90)  相似文献   

20.
Various ecophysiological investigations on carnivorous plants in wet soils are presented. Radial oxygen loss from roots of Droseraceae to an anoxic medium was relatively low 0.02 – 0.07 mol(O2) m– 2 s–1 in the apical zone, while values of about one order of magnitude greater were found in both Sarracenia rubra roots and Genlisea violacea traps. Aerobic respiration rates were in the range of 1.6 – 5.6 mol kg–1 (f.m.) s–1 for apical root segments of seven carnivorous plant species and 0.4 – 1.1 mol kg–1 (f.m.) s–1 for Genlisea traps. The rate of anaerobic fermentation in roots of two Drosera species was only 5 – 14 % of the aerobic respiration. Neither 0.2 mM NaN3 nor 0.5 mM KCN influenced respiration rate of roots and traps. In all species, the proportion of cyanide-resistant respiration was high and amounted to 65 – 89 % of the total value. Mean rates of water exudation from excised roots of 12 species ranged between 0.4 – 336 mm 3 kg–1 (f.m.) s–1 with the highest values being found in the Droseraceae. Exudation from roots was insensitive to respiration inhibitors. No significant difference was found between exudation rates from roots growing in situ in anoxic soil and those kept in an aerated aquatic medium. Carnivorous plant roots appear to be physiologically very active and well adapted to endure permanent soil anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号