首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neural crest (NC) cells may be involved in kidney organogenesis by providing inductive signals and contributing to cells of the renal stroma. We show here that the lumbo-sacral NC cells fate mapped with the aid of Wnt-1 promoter in the mouse migrate close to the metanephros at the initiation of organogenesis but these cells remain superficial to the condensed Pax2-expressing mesenchymal cells. NC-derived cells enter later into the kidney proper from the midline region. The NC cells contribute also to development of the extra-adrenal para-aortic bodies, Zuckerkandl's bodies and the nerve cord of the sympathetic nervous system. Splotch (Sp2H/Sp2H) embryos, having a NC defect in the lumbo-sacral region, develop a normal metanephros even though the kidney does not express the NC markers Sox10, Phox2b and tyrosine hydroxylase. Consistent with the histological findings, the kidneys of Sp2H/Sp2H embryos also express the stromal genes Foxd1, Hoxa10 and RARβ normally. Wnt-1 promoter-marked wild-type LacZ NC cells migrate intensely from the heterologous inducer tissue of the embryonic dorsal spinal cord (SPC) to the kidney mesenchyme, but tubule induction does not depend on NC migration, since the Sp2H/Sp2H SPC also induces tubulogenesis. The Sp2H/Sp2H mesenchyme also remains competent for tubulogenesis. We conclude that the NC cells fate mapped with the aid of Wnt-1 promoter migrate to the close to the metanephros and form later derivatives integrating with the kidney, but they may not be essential to the development of the stromal cells nor they may provide critical morphogenetic signals to regulate early kidney development in vivo.  相似文献   

3.
The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.  相似文献   

4.
The levels of activity of 2-phosphoglycolate phosphatase in the green algae, Chlamydomonas reinhardtii and Chlorella vulgaris, were in the range of 37 to 60 micromoles per milligram chlorophyll per hour and in the blue-green algae, Anacystis nidulans and Anabaena variabilis were 204 to 310 micromoles per milligram chlorophyll per hour. The activity in each species was similar regardless of whether the algae were grown with air or 5% CO2 in air. The enzyme purified 530-fold from Chlamydomonas was stable, had a broad pH optimum between 6 and 8.5, and was specific for the hydrolysis of P-glycolate with a Km of 23 micromolar. The enzyme purified 18-fold from Anacystis was labile, had a sharp pH optimum at 6.3, and was also specific for P-glycolate with a Km of 94 micromolar. The molecular weight of the enzyme from Chlamydomonas was estimated to be 92,000 by gel filtration.

The phosphatase from both sources required a divalent cation for activity. The Chlamydomonas enzyme was most effectively activated by Co2+, but was also activated by Mg2+ (Ka = 30 micromolar), Mn2+, and Zn2+. The Anacystis enzyme was most effectively activated by Mg2+ (Ka = 140 micromolar), and was also activated by Co2+ and Mn2+, but not by Zn2+. Anions were also required for maximum activity of the enzyme from both sources. The Chlamydomonas enzyme was activated about 2- to 3-fold by chloride (Ka = 140 micromolar), bromide, nitrate, bicarbonate (Ka = 600 micromolar) and formate. The Anacystis enzyme was activated over 10-fold by chloride (Ka = 870 micromolar), bromide, iodide, and nitrate, but was not activated by bicarbonate or formate.

The properties of the algal enzymes were similar to those previously reported for higher plants. The levels and kinetic properties of the enzyme seemed sufficient to account for the flux through the glycolate pathway that occurs in these algae. The phosphatase was not associated with the ribulose 1,5-bisphosphate carboxylase/oxygenase responsible for P-glycolate formation in the carboxysomes of Anacystis.

  相似文献   

5.
Head-tail connector of bacteriophage lambda   总被引:3,自引:0,他引:3  
The head-tail connector of phage λ, a protein knob inside the head shell to which the tail attaches, is composed primarily of head protein gpB 4 and its cleaved form gpB1. All of the gpB and gpB1 in the virion is located in the connector. gpFII, the protein that is thought to form the site on the head to which the tail binds, is also located in the connector. Head proteins gpE, gpD, X1 and X2 are not components of the connector. These assignments were made by disrupting virions with guanidine hydrochloride, in such a way that heads and tails separate with the connectors attached to the tails, and determining which head proteins co-purify with the tails.We find that lysates from a λE? infection contain a high proportion of tails with connectors attached. (Gene E codes for the major component of the head shell.) Connectors are also present on tails from a λE?C? infection, arguing that gpE, gpC, and their processed forms, X1 and X2, are all unnecessary for assembly of biologically competent connectors. The gpB in the connectors on E? and E?C? tails is in the uncleaved form. Connectors are not seen on tails from infections by λE?B?, λE?FII?, or λE? in a groE? host.  相似文献   

6.
7.
The lon mutants of Escherichia coli grow apparently normally except that, after temporary periods of inhibition of deoxyribonucleic acid synthesis, septum formation is specifically inhibited. Under these conditions, long, multinucleate, nonseptate filaments result. The lon mutation also creates a defect such that wild-type bacteriophage λ fails to lysogenize lon mutants efficiently and consequently forms clear plaques on a lon host. Two lines of evidence suggest that this failure probably results from interference with expression of the λcI gene, which codes for repressor, or with repressor action:-(i) when a lon mutant was infected with a λcII, cIII, or c Y mutant, there was an additive effect between the lon mutation and the λc mutations upon reduction of lysogenization frequency; and (ii) lon mutants permitted the growth of the λcro mutant under conditions in which the repressor was active. The isolation of λ mutants (λtp) which gained the ability to form turbid plaques on lon cells is also reported.  相似文献   

8.
Pseudomonas fluorescens J2 can produce 2,4-diacetylphloroglucinol (2,4-DAPG) as the main antibiotic compound and effectively inhibits the wilt pathogens Ralstonia solanacearum and Fusarium oxysporum. The phlF which negatively regulates the 2,4-DAPG synthesis in strain J2 was disrupted by homologous recombination to construct a mutant strain J2-phlF. The mutant J2-phlF produced much more 2,4-DAPG and showed higher inhibitory effect on R. solanacearum than the wild type strain J2 in vitro. The mutant J2-phlF also showed more colonization of tomato roots and higher inhibition to R. solanacearum in soil than wild type strain J2. The biocontrol efficiency of mutant J2-phlF was higher against tomato bacterial wilt than wild type strain J2, but the differences were not significant. However, the application of both strains with organic fertilizer improved the colonization and biocontrol efficiency against tomato bacterial wilt and mutant strain J2-phlF showed higher biocontrol efficiency against tomato bacterial wilt than wild type strain J2. Both strains, J2 and J2-phlF, could also promote the growth of tomato plants.  相似文献   

9.
10.
The re-direction of host-cell machinery to virus-specific functions, by the physical interaction between viral proteins and pre-existing host proteins, may be a mechanism commonly exploited in virus infection. We argue that the formation of a hybrid complex between an Escherichia coli protein and bacteriophage T4 protein controls the assembly of T4 capsid precursors into ordered structures. This early step in assembly can be blocked either by a mutation in T4 gene 31 (Laemmli et al., 1970), or by a bacterial mutation (groE, tabB) (Georgopoulos et al., 1972; Coppo et al., 1973). We show that this step can also be blocked by the interaction of bacterial mutations (tabBk, tabBcom) and viral mutations kB and com8); comB mutations map in T4 gene 31, while kB mutations map in either gene 31 or 23. Many k8 mutants are also temperature-sensitive. Phage T4 head assembly is blocked when tabBk (or tabBcom) are infected with T4kB (or comB), but not when the bacterial mutant is infected with T4 wild-type, or when tab+ cells are infected with kB (or comB). We interpret this phenomenon as a case of negative complementation between altered host and viral subunits of a hybrid complex and illustrate this idea with the experiments described in the text. We describe a technique by which tabB mutants can be efficiently and specifically selected with kB (or comB) T4 mutants. Since many kB mutants are temperature-sensitive, temperature-sensitive mutants in other genes also may have latent k properties, and may be used for the isolation of new tab bacterial mutants, identifying other interactions between T4 and E. coli proteins.  相似文献   

11.
DNA double-strand breaks (DSBs) occur after exposing cells to ionizing radiation or under the action of various antitumor antibiotics. They can be also generated in the course cell processes, such as meiosis and mating type switching in yeast. The most preferential mechanism for the correction of DNA DSB in yeasts is recombinational repair controlled by RAD52 group genes. The role of recombinational repair in mating type switching of fission yeast cells was examined on the example of genes of this group, rhp51 + and rhp55 +. We constructed homothallic strains of genotypes h 90 rhp51 and h 90 rhp55, and found that mutant cells yielded colonies with the mottled phenotype. In addition, h 90 cells with deletions in these genes were shown to segregate heterothallic iodine-negative colonies h ? and h +. The genome region, responsible for the switching process in these segregants, was analyzed by DNA hybridization. As shown in this analysis, h + segregants had the h +N or h 90 configuration of the mat region, whereas h ?, the h 90 configuration. Segregants h +N contained DNA duplication in the mat region. DNA rearrangements were not detected at the mating type locus, but the level of DNA DSB formation was drastically decreased in these segregants. Thus, our results show that genes rhp51 + and rhp55 + are involved not only in the repair of induced DNA DSB, but also in the mechanism of mating type switching in fission yeast.  相似文献   

12.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

13.
A 12-membered polyazamacrocycle, 1-oxa-4,7,10-triazacyclododecane-N,N′,N″-triacetic acid (ODTA), has been reported to provide an indium chelate of net neutral charge with thermodynamic stability higher than 1,4,7,10-tetraazacyclododecane-N,N′,N″,N?-tetraacetic acid (DOTA). However, neither synthetic procedure for a C-functionalized ODTA (C-ODTA) nor its chelating ability with a trace amount of radioactive indium-111 (111In) has been elucidated. We herein present a facile synthetic procedure for C-ODTA, and estimated its ability as a chelating agent for radiolabeling peptides and proteins with 111In. The synthetic procedure involves the synthesis of a linear precursor using a para-substituted phenylalanine derivative as a starting material. The following intramolecular cyclization reaction was best performed (>73% yield) when Boc-protected linear compound and the condensation reagent, HATU, were simultaneously added to the reaction vessel at the same flow rate. The cyclic compound was then reduced with BH3 and alkylated with tert-butyl bromoacetate. The synthetic procedure was straightforward and some optimization would be required. However, most of the intermediate compounds were obtained easily in good yields, suggesting that the present synthetic procedure would be useful to synthesize C-ODTA derivatives. The intramolecular cyclization reaction might also be applicable to synthesize polyazamacrocycles of different ring sizes and cyclic peptides. In 111In radiolabeling reactions, C-ODTA provided 111In chelates in higher radiochemical yields at low ligand concentrations when compared with C-DOTA. The 111In-labeled C-ODTA remained unchanged in the presence of apo-transferrin. The biodistribution studies also showed that the 111In-labeled compound was mainly excreted into urine as intact. These findings indicate that C-ODTA would be useful to prepare 111In-labeled peptides of high specific activities in high radiochemical yields.  相似文献   

14.
1. (Na+ +K+)-ATPase from rectal gland of Squlus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the α subunit (Mr 106 000) and two on the β subunit (Mr 40 000). The β subunit also contains one disulphide bridge. 2. The reaction of (Na+ +K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each α subunit and one on each β subunit. Reaction of these groups with N-methylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each α subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5–10 nM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ +K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

15.
The recessive genic male sterility (RGMS) line 9012AB has been used successfully for rapeseed hybrid production in China. This male sterility was previously thought to be controlled by three independent genes (Bnms3, Bnms4, and BnRf). Here, we initially attempted to locate the BnMs4 locus and develop feasible molecular markers for application in practical rapeseed breeding. However, we found that three sequence characterized amplified region markers and five simple sequence repeat markers identified as linked to BnMs4 were also genetically associated with BnRf, suggesting the possible co-localization of these two loci. Moreover, we proved that four intron-based polymorphism markers tightly linked or co-segregated with BnRf could also be mapped to BnMs4 with a genetic distance ranging from 0.054 to 0.594?cM. Finally, integration of genetic maps around BnRf and BnMs4 allows for the physical restriction of both loci to a DNA fragment of about 50?kb. Systematic genetic tests also provided evidence that the candidate BnMs4 locus was allelic to the BnRf locus. These results confirmed a major modification of the sterility inheritance model in 9012A: specifically, that this male sterility was essentially controlled by two loci (BnMs3 and BnRf), whereas the previously designated BnMs4 locus (hereafter designated as BnRf a ) was just one allele of BnRf in addition to BnRf b (the allele from 9012A) and BnRf c (the allele from temporary maintainer), with a dominance relationship of BnRf a ?>?BnRf b ?>?BnRf c . This inheritance model will simplify the breeding process involved with this RGMS line, especially with the BnRf allele-specific molecular markers identified here.  相似文献   

16.
Pt(II) complexes of the types cis- and trans-Pt(amine)2I2 with amines containing a phenyl group were synthesized and studied mainly by IR and multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopies. The compounds are not very soluble. In 195Pt NMR spectroscopy, the cis isomers were observed at slightly lower fields than the trans analogues (average Δδ = 11 ppm) in acetone. In 1H NMR, the NH groups were also found at slightly lower fields in the cis isomers. The coupling constants 2J(195Pt-1HN) varied from 53 to 85 Hz and seem slightly smaller in the trans configuration. The 13C NMR spectra of most of the complexes were measured. No coupling constants J(195Pt-13C) were detected due to the low solubility of the compounds. The cis isomers containing a phenyl group on the N atom could not be isolated except for Ph-NH2 which was shown to be a mixture of isomers in acetone. The tetrasubstituted ionic compounds [Pt(amine)4]I2 for the less crowded ligands were also studied mainly by NMR spectroscopy in aqueous solution. The 195Pt chemical shifts vary between −2855 and −2909 ppm. The coupling constants 3J(195Pt-1H) are about 40 Hz. The iodo-bridged dinuclear species I(amine)Pt(μ-I)2Pt(amine)I were also synthesized and characterized. Two isomers are present in acetone solution for most of the compounds. Their δ(Pt) signals were observed at about −4000 ppm and their coupling constants 2J(195Pt-1HN) are around 69 Hz.  相似文献   

17.
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR +plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec + sfiA +strain. The implications of these data for the kinetics of DNA repair are discussed.  相似文献   

18.
An amber dna mutant of Escherichia coli K12 affecting DNA ligase   总被引:5,自引:0,他引:5  
We have isolated an amber mutant (dnaL321) of Escherichia coli K12, which affects DNA ligase and which is lethal unless it is suppressed. DNA is degraded under the restrictive conditions. The mutation also affects the sensitivity of the cell to ultraviolet light irradiation, and the capacity to support the growth of phage λ that is deficient in general recombination. This pleiotropy is considered to be due to a single mutation, and is suppressed by supD?Isu+ and by supF?suIII+). The mutation is cotransducible with dapE(2%), and with ptsI(85%), by phage Plvir.  相似文献   

19.
A method of transductional complementation was developed in Pseudomonas aeruginosa to identify the cistrons involved in the conjugal transfer of the wide host range R plasmid R18. This used the P. aeruginosa bacteriophage E79tv-2 and has led to the identification of eight tra cistrons encoded by this plasmid. Plasmids mutant in six cistrons, traA, traB, traC, traD, traE, and traG were resistant to donor-specific phage (Dps?) while traF and traH mutant plasmids retained phage sensitivity. Some traB mutants were unable to inhibit the replication of phage G101 (Phi(G101)?) while some were also deficient in entry exclusion (Eex?). Two traB mutants which were also Eex? were suppressible by an amber suppressor. Three tra mutants selected directly as being Phi(G101)? were found to be also Dps?Eex? and mutant in traB. These data suggest a relationship between traB, Eex, and Phi(G101). In order to facilitate future genetic comparison of the tra genes of R18 and other wide host range plasmids and the role of the host in conjugation, R18 DNA was compared with that of RP4, by restriction enzyme fragment patterns and found to be identical.  相似文献   

20.
The effects of Chlorpromazine (Cpz) on the potential difference (PD), short-circuit current (SCC), and total conductance (GT) on Pleurodema thaul skin and on the skin response to dopamine were analysed. Cpz applied to the serosal surface in concentrations ranging from 1.25 × 10−5 to 1.25 × 10−4 M significantly increased the PD, the SCC and the GT. The effect of Cpz was abolished by BaCl2 but not by alpha or beta adrenergic receptor antagonists. Cpz decreased the skin response to noradrenaline and to angiotensin 11. Dopamine (5 × 10−7 M to 5 × 10−6M) also induced a significant increase in the PD, SCC and GT. This response was antagonized by propranolol but not by dibenamine. Additive effects of dopamine and Cpz were also found. The amiloride test showed that Cpz decreased ENa., the driving force of sodium and increased gna, which represents active sodium conductance. These results are consistent with the hypothesis that Cpz increases transport across the isolated toad skin by increasing mucosal and serosal permeability. The results also suggest that Cpz decreases membrane cabnodulin availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号