首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal species use specialized cell-to-cell channels, called gap junctions, to allow for a direct exchange of ions and small metabolites between their cells' cytoplasm. In invertebrates, gap junctions are formed by innexins, while vertebrates use connexin (Cx) proteins as gap-junction-building blocks. Recently, innexin homologs have been found in vertebrates and named pannexins. From progress in the different genome projects, it has become evident that every class of vertebrates uses their own unique set of Cxs to build their gap junctions. Here, we review all known Xenopus Cxs with respect to their expression, regulation, and function. We compare Xenopus Cxs with those of zebrafish and mouse, and provide evidence for the existence of several additional, non-identified, amphibian Cxs. Finally, we identify two new Xenopus pannexins by screening EST libraries.  相似文献   

2.
Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that the intramembrane particles making up these two junctional types must be quite distinct entities rather than products of a common precursor.  相似文献   

3.
The Onychophora are a rare group of primitive invertebrates, relatively little investigated. Tissues from a range of their digestive, secretory and excretory organs have been examined to establish the features of their intercellular junctions. Glutaraldehyde-fixed cells from the midgut and rectum, as well as the renal organ, mucous gland, salivary gland, epidermis, CNS and testis from specimens of Peripatus acacioi, have been studied by thin section and freeze-fracture electron microscopy. Adjacent cells in the epithelia of all these tissues are joined by apical zonulae adhaerentes, associated with a thick band of cytoskeletal fibrils. These are followed by regular intercellular junctional clefts, which, in thin sections, have the dense, relatively unstriated, appearance of smooth septate junctions (SSJ). However, freeze-fracture reveals that only the midgut has what appear to be characteristic SSJs with parallel alignments of closely-packed rows of intramembranous particles (IMPs); these IMPs are much lower in profile than is common in such junctions elsewhere. The mucous gland, testis, rectal and renal tissues exhibit, after freeze-fracture, the characteristic features of pleated septate junctions (PSJ) with undulating rows of aligned but separated junctional particles. Suggestions of tricellular septate junctions are found in replicas at the interfaces between 3 cells. In addition, renal tissues exhibit scalariform junctions in the basal regions of their cells. Between these basal scalariform and apical septate junctions, other junctions with reduced intercellular clefts are observed in these renal tissues as well as the rectum, but these appear not to be gap junctions. Such have not been unequivocally observed in any of the tissues studied from this primitive organism; the same is true of tight junctions.  相似文献   

4.
Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.  相似文献   

5.
The emerging diversity of Rickettsia   总被引:1,自引:0,他引:1  
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.  相似文献   

6.
Sealing junctions in a number of arachnid tissues   总被引:1,自引:0,他引:1  
Flower NE 《Tissue & cell》1986,18(6):899-913
The junctions present in the central nervous system (CNS), midgut, silk gland and venom gland of arachnids have been investigated. Special care was taken to try to locate tight junctions in tissue other than CNS but they were not found in any of the other tissues. The detailed structure of the junctions present are discussed. The tight junctions present in CNS are somewhat different in appearance and fracturing behaviour to most vertebrate tight junctions and closely resemble only those found in Urochordates (a non-vertebrate chordate). The two types of septate junctions found in the other tissues belong to the pleated septate and smooth septate classes but show some interesting differences. It appears probable that the septate junctions in Arachnida, Merostomata and Myriopoda have different fracturing properties from those found in other arthropods. The finding that only septate junctions are present in most arachnid tissues, although tight junctions are present in CNS, is discussed in the context of the sealing function of septate junctions in invertebrate tissues.  相似文献   

7.
In most cell types, distinct forms of intercellular junctions have been visualized at the ultrastructural level. Among these, the septate junctions are thought to seal the neighboring cells and thus to function as the paracellular barriers. The most extensively studied form of septate junctions, referred to as the pleated septate junctions, is ultrastructurally distinct with an electron-dense ladder-like arrangement of transverse septa present in invertebrates as well as vertebrates. In invertebrates, such as the fruit fly Drosophila melanogaster, septate junctions are present in all ectodermally derived epithelia, imaginal discs, and the nervous system. In vertebrates, septate junctions are present in the myelinated nerves at the paranodal interface between the myelin loops and the axonal membrane. In this review, we present an evolutionary perspective of septate junctions, especially their initial identification across phyla, and discuss many common features of their morphology, molecular organization, and functional similarities in invertebrates and vertebrates.  相似文献   

8.
Tissues from the epidermis, alimentary tract and notochord of the cephalochordate Branchiostoma lanceolatum have been examined in both thin sections and freeze-fracture replicas to ascertain the nature of the intercellular junctions that characterize their cell borders. The columnar epithelial cells from the branchial chamber (pharynx), as well as from the anterior and posterior intestine, all feature cilia and microvilli on their luminal surfaces. However, their lateral surfaces exhibit zonulae adhaerentes only. No gap junctions have been observed, nor any tight junctions (as are a feature of the gut of urochordates and higher vertebrates), nor unequivocal septate junctions (as are typical of the gut of invertebrates). The basal intercellular borders are likewise held together by zonulae adhaerentes while hemidesmosomes occur along the basal surface where the cells abut against the basal lamina. The lateral cell surfaces, where the adhesive junctions occur, at both luminal and basal borders, do not exhibit any specialized arrangement of intramembrane particles (IMPs), as visualized by freeze-fracture. The IMPs are scattered at random over the cell membranes, being particularly prevalent on the P-face. The only distinctive IMPs arrays are those found on the ciliary shafts in the form of ciliary necklaces and IMP clusters. With regard to these ciliary modifications, cephalochordates closely resemble the cells of the branchial tract of ascidians (urochordates). However, the absence of distinct junctions other than zonulae adhaerentes makes them exceptions to the situation generally encountered in both vertebrates and urochordates, as well as in the invertebrates. Infiltration with tracers such as lanthanum corroborates this finding; the lanthanum fills the extracellular spaces between the cells of the intestine since there are no junctions present to restrict its entry or to act even as a partial barrier. Junctions are likewise absent from the membranes of the notochord; the membranes of its lamellae and vesicles exhibit irregular clusters of IMPs which may be related to the association between the membranes and the notochordal filaments. Epidermis and glial cells from the nervous system possess extensive desmosomal-like associations or zonulae adhaerentes, but no other junctional type is obvious in thin sections, apart from very occasional cross-striations deemed by some previous investigators to represent 'poorly developed' septate junctions.  相似文献   

9.
Actin filaments are associated with the septate junctions of invertebrates   总被引:2,自引:0,他引:2  
N J Lane  V Flores 《Tissue & cell》1988,20(2):211-217
Septate junctions are almost ubiquitous in the tissues of invertebrates but are never found in those of vertebrates. In spite of their widespread occurrence and hence obvious importance to the invertebrates, their precise function has remained elusive although they have been variously considered to be regions of cell-cell coupling, permeability barriers or adhesion sites. This report demonstrates that elements of the cytoskeletal system insert into the cytoplasmic face of septate junctions. Actin filaments, identified by virtue of their capacity to bind the S1 subfragment of rabbit myosin, are associated with the membranes of septate junctions. Cytochalasin D, an actin depolymerizer, leads to disorganization of the intramembrane components of these junctions. These data suggest that a primary role of septate junctions could be to maintain intercellular cohesion and hence tissue integrity. The assembly and localization of these junctions may be mediated, directly or indirectly, by the cytoplasmic actin filaments associated with their lateral membranes.  相似文献   

10.
Innexins form two types of channels   总被引:1,自引:0,他引:1  
Bao L  Samuels S  Locovei S  Macagno ER  Muller KJ  Dahl G 《FEBS letters》2007,581(29):5703-5708
Injury to the central nervous system triggers glial calcium waves in both vertebrates and invertebrates. In vertebrates the pannexin1 ATP-release channel appears to provide for calcium wave initiation and propagation. The innexins, which form invertebrate gap junctions and have sequence similarity with the pannexins, are candidates to form non-junctional membrane channels. Two leech innexins previously demonstrated in glia were expressed in frog oocytes. In addition to making gap junctions, innexins also formed non-junctional membrane channels with properties similar to those of pannexons. In addition, carbenoxolone reversibly blocked the loss of carboxyfluorescein dye into the bath from the giant glial cells in the connectives of the leech nerve cord, which are known to express the innexins we assayed.  相似文献   

11.
The intercellular junctions of the epithelium lining the hepatic caecum of Daphnia were examined. Electron microscope investigations involved both conventionally fixed material and tissue exposed to a lanthanum tracer of the extracellular space. Both septate junctions and gap junctions occur between the cells studied. The septate junctions lie apically and resemble those commonly discerned between cells of other invertebrates. They are atypical in that the high electron opacity of the extracellular space obscures septa in routine preparations. The gap junctions are characterized by a uniform 30 A space between apposed cell membranes. Lanthanum treatment of gap junctions reveals an array of particles of 95 A diameter and 120 A separation lying in the plane of the junction. As this pattern closely resembles that described previously in vertebrates, it appears that the gap junction is phylogenetically widespread. In view of evidence that the gap junction mediates intercellular electrotonic coupling, the assignment of a coupling role to other junctions, notably the septate junction, must be questioned wherever these junctions coexist.  相似文献   

12.
During the past two decades there have been rapid advances inour knowledge of the structure and function of the protein hormonesin the brain and gastroenteropancreatic system (GEP). Many publishedarticles have highlighted the superfamily of hormonal peptides,specifically, the mechanisms and control of peptide synthesisin neural and non-neural tissues, and gene structure. Here wepresent an analysis of the annual trends, between 1980 and 1997,of research emphasis on six protein/peptide hormones, as reflectedby their individual frequency of publication per year. Althoughthis symposium is focused on the GEP hormones, we provide hereina perspective on the level of research activity of the hormonesinsulin, glucagon, cholecystokinin, insulin-like growth factor-Iand -II, neuropeptide Y and somatostatin in the brain/gut systemsthroughout the vertebrates and invertebrates. Many publicationsdeal with the evolution of these peptides and their superfamilies,yet as noted in this review, there are relatively few referencesto these peptides in invertebrates and non-mammalian species.Typically in invertebrates, the number of citations is low andmostly focused on three phyla, the arthropods, mollusks andhelminths. Generally, in the vertebrates the smallest numberof citations is in the cyclostomes and elasmobranchs. Becausemost groups of invertebrates and vertebrates have received scantattention, phylogenetic comparisons are limited. Evolutionaryinformation concerning important groups of animals, such ashelminths, mollusks, protochordates and cyclostomes, is essentialto establish the phylogenetic histories of the hormonal peptides.The challenge to comparative endocrinologists is to examinespecies in key evolutionary positions in order to gain an understandingof the diversity and function of the hormones and to determinethe molecular features that form clues to their phyletic interrelationshipsand progression.  相似文献   

13.
We have measured the ability of extracts of tissues from several species of mammals, birds, reptiles, amphibia and fish to demethylate adducts of O6-methylguanine in exogenous DNA by transfer of the methyl group to an acceptor protein. Our study also encompassed tissues from a smaller number of invertebrates, from arthropods, molluscs and annelids. The vertebrate tissues used were liver, brain, spleen and kidney. In the case of the invertebrates we sampled liver, neural tissue, gonads, digestive tract and hepatopancreas. There was no consistent change in the amount of acceptor activity per unit of protein or DNA going from cold-blooded to warm-blooded vertebrates. Liver invariably had the highest amount; this finding was not unexpected since metabolic processes in the liver are high, and good cellular protective mechanism important. Inter-class comparisons within the vertebrates are highly speculative, and hindered by the fact that there is little information on carcinogenesis in animals other than rodents and humans. O6-methylguanine acceptor activity was found in all the invertebrate tissues tested. The amounts were variable, 0.003-0.0051 fmol/micrograms cellular DNA, but the values fell within the range of those found in the tissues of vertebrates.  相似文献   

14.
The structure of scalariform junctions has been analysed in a number of different animal groups by a variety of techniques. These junctions generally display a highly regular intercellular cleft straddled by indistinct cross-striations. They are often in intimate spatial association with mitochondria which lie in parallel to the leaflets of their junctional membranes. Both intercellular and intramembranous features of these junctions have been studied in this report and certain common characteristics are revealed in all species examined. The intercellular cross-striations seen in this junctional type are found to be actually hollow columns or pillars, of hour-glass shape, regularly spaced in rhomboidal, or hexagonal arrays which may be anchored in place by certain of the intramembranous particles (IMPs) that occur in abundance on the membrane Pface. The density of the pillars is less than that of the IMPs. The other particles in the junctional area on both P and E faces may therefore be involved in ion transport, since the particular tissues in which these junctions are found are always involved in fluid flow. Those organisms which exhibit scalariform junctions have no closed circulatory system and thus may require some specialized osmoregulatory control in their excretory tissues. Those tissues which exhibit these junctions include organs such as rectal pads, rectal papillae, gills and nephridia, all of which share a similar physiological function even though they are found in organisms which occupy very different habitats. Such organisms include arthropods of different classes, as well as tunicates, where the presence of the scalariform junctions is restricted to a very specialized gut region. A revised model of scalariform junctions is presented here, which encompasses our new observations of their features. These include intercellular columns which are hollow and ‘hour-glass’, rather than straight sided, in side view, together with their spacing and orderly hexagonal or rhomboidal pattern of distribution; their possible tethering by only a certain percentage of the IMPs in the junctional area is also incorporated in this model.  相似文献   

15.
Summary The branchia of pyrosomes has been found to be like that of ascidians in that it shares with the latter, besides the presence of peribranchial chambers, stigmata bordered by clusters of seven rows of flattened cells, each bearing a single row of long cilia. The intercellular junctions between ciliated cells of the branchial basket and between the cells lining the gut, in pyrosomes, have been studied in thin sections and by freeze-fracture. In both tissues tight and gap junctions are present, but the former are much more extensive in the gut. The gap junctions in the branchial basket exhibit some atypical features. Moreover, although there are extensive zonulae adhaerentes between the ciliated cells of the branchial basket, there are none between the epithelial cells of the intestinal tract. This feature of the branchiae, together with the alignment of their cells into highly ordered rows of seven cells, are similar to those found in some groups of ascidians. The evolutionary relationships between pyrosomes and the aplousobranch ascidians are considered in the light of these results.  相似文献   

16.
17.
Gap junctions     
Electrical coupling through gap junctions constitutes a mode of signal transmission between neurons (electrical synaptic transmission). Originally discovered in invertebrates and in lower vertebrates, electrical synapses have recently been reported in immature and adult mammalian nervous systems. This has renewed the interest in understanding the role of electrical synapses in neural circuit function and signal processing. The present review focuses on the role of gap junctions in shaping the dynamics of neural networks by forming electrical synapses between neurons. Electrical synapses have been shown to be important elements in coincidence detection mechanisms and they can produce complex input-output functions when arranged in combination with chemical synapses. We postulate that these synapses may also be important in redefining neuronal compartments, associating anatomically distinct cellular structures into functional units. The original view of electrical synapses as static connecting elements in neural circuits has been revised and a considerable amount of evidence suggests that electrical synapses substantially affect the dynamics of neural circuits.  相似文献   

18.
W.J. Larsen 《Tissue & cell》1983,15(5):645-671
Traditionally, all gap junctions have been considered to be identical in structure and function throughout the animal kingdom. Functions ascribed to these membrane specializations have been fundamental and have not been thought to differ significantly with respect to their mechanism of action. More recent studies support the view, however, that structural and compositional diversity may reflect significant functional differences between gap junctions in different classes of tissue but no clear and definitive patterns have yet emerged. This review does not attempt to comprehensively analyze the totality of the vast gap junction and coupling literature but focuses instead upon those recent observations which raise new questions related to the biological activities of gap junctions in different tissues.  相似文献   

19.
Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions.  相似文献   

20.
Arthropods have small but sophisticated brains that have enabled them to adapt their behavior to a diverse range of environments. In this review, we first discuss some of general characteristics of the arthropod "microbrain" in comparison with the mammalian "megalobrain". Then we discuss about recent progress in the study of sensory and memory-processing systems of the arthropod "microbrain". Results of recent studies have shown that (1) insects have excellent capability for elemental and context-dependent forms of olfactory learning, (2) mushroom bodies, higher olfactory and associative centers of arthropods, have much more elaborated internal structures than previously thought, (3) many genes involved in the formation of basic brain structures are common among arthropods and vertebrates, suggesting that common ancestors of arthropods and vertebrates already had organized head ganglia, and (4) the basic organization of sensori-motor pathways of the insect brain has features common to that of the mammalian brain. These findings provide a starting point for the study of brain mechanisms of elaborated behaviors of arthropods, many of which remain unexplored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号