首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of calcium on adenylate cyclase from rabbit small intestine has been studied using a particulate preparation obtained from isolated epithelial cells. Both basal and vasoactive intestinal peptide-stimulated activities were inhibited by calcium concentrations in the micromolar range. In the presence of calmodulin, a biphasic response was obtained. At low calcium concentration (4 X 10(-9)-6 X 10(-8) M) the enzyme was activated up to 50%. As the Ca2+ concentration was increased, the enzyme was concomitantly inhibited. Half-maximal inhibition of calmodulin-dependent activity was obtained at 1 microM free Ca2+. The activation of the enzyme was also dependent on the concentration of Mg2+. At less than 1 microM Ca2+, the enzyme exhibited a biphasic response, being activated at below 3 mM Mg2+ and inhibited at higher concentrations. At Ca2+ concentrations that were inhibitory, the enzyme did not show the biphasic response to Mg2+. At concentrations above 3 mM, the maximal rate (Vmax) remained constant. Vmax was inversely proportional to the concentration of Ca2+ present. Calmodulin altered Vmax when acting on vasoactive intestinal peptide-stimulated enzyme. Calmodulin had no effect on the Km for hormone activation. The calmodulin-dependent activity was inhibited by incubation with trifluoperazine.  相似文献   

2.
Forskolin, a diterpene that exerts several pharmacological effects, activates adenylate cyclase in brain and in some other mammalian tissues. Properties of forskolin activation of adenylate cyclase from central nervous system of the dipterous Ceratitis capitata are described. The interaction of forskolin with the insect adenylate cyclase system was studied by evaluating its effect on metal-ATP kinetics, protection against thermal inactivation, membrane fluidity and enzyme modulation by fluoride, guanine nucleotides, octopamine, and ADP-ribosylation by cholera toxin. The diterpene stimulated basal enzyme activity both in membranes and Triton X-100-solubilized preparations, apparently devoid of functional regulatory unit, this effect being rapidly reversed by washing the membranes. An increase of Vmax accounts for the activation of soluble and membrane adenylate cyclase preparations by forskolin, whereas the affinity of the enzyme for the substrate was not affected. Forskolin apparently protects the membrane enzyme from thermal inactivation, and at concentrations that promote the enzyme activity the diterpene does not alter membrane microviscosity. Forskolin does not appear to alter the sensitivity of insect adenylate cyclase to sodium fluoride, guanine nucleotide, or regulatory subunit ADP ribosylated by cholera toxin, the combined effect of these factors with the diterpene resulting in a nearly additive enzymatic activation. However, forskolin blocks the octopamine stimulatory input. Results obtained with the insect adenylate cyclase system are discussed and compared to what is known about mammalian systems to propose a mechanism of enzyme activation by forskolin.  相似文献   

3.
4.
Dog thyroid epithelial follicular cells in primary culture are quiescent in an insulin-supplemented serum-free medium. They are induced, after a 16- to 20-h prereplicative phase, to synthesize DNA upon stimulation by forskolin, a general adenylate cyclase activator that mimics all the effects of thyrotropin in these cells. The characteristics of adenylate cyclase activation by forskolin make this drug a convenient tool to enhance cellular cyclic AMP levels for well-defined periods of the cell cycle, allowing determination of which parts of the prereplicative phase are controlled by cyclic AMP. We observe that induction of DNA synthesis by forskolin requires its continuous presence for most of the prereplicative phase until a point that little precedes the initiation of DNA replication. Before this point, interruptions in forskolin presence as short as 2 h delay the onset of DNA synthesis, indicating a rapid regression of the cells to an earlier part of G1 from which they can be rescued by forskolin readdition. Similar delays in the onset of S phase are also induced by reversible protein synthesis inhibitions using pulses of cycloheximide. These data suggest that in dog thyrocytes elevated cyclic AMP levels stimulate the progression into G1 phase until a late commitment point before DNA synthesis. This progression depends on peculiarly labile cyclic AMP-stimulated events which might well be the induction by cyclic AMP of the synthesis of labile proteins.  相似文献   

5.
Calcium-independent activation of adenylate cyclase by calmodulin   总被引:4,自引:0,他引:4  
Adenylate cyclase of Bordetella pertussis is stimulated by calmodulin by two distinct interactions. At low activator concentrations (approximately equal to 1 nM) the process is Ca2+-dependent (i.e. inhibited by EGTA added before calmodulin). High activator concentrations (approximately equal to 0.1-10 microM) stimulate adenylate cyclase also in the presence of EGTA, an effect not accounted for by residual Ca2+ or low concentrations of Ca X calmodulin, which thus appears to be due to calcium-free calmodulin. Some calmodulin dose-response curves show both phases of stimulation, separated by a plateau of activity, and half-maximal activating concentrations differ by 100-300-fold. Both effects are on the V and not the Km for ATP and are not mimicked by 10(5)-fold greater concentrations of parvalbumin or by various polyanions. In addition, adenylate cyclase stimulation at high calmodulin concentrations is greater in the presence of EGTA than in its absence. This enhancement is also produced by 1,10-phenanthroline and 8-hydroxyquinoline but not by non-chelating isomers. These compounds are poor Ca2+ chelators, stimulate at any calmodulin concentration (unlike EGTA), and suggest regulation of this adenylate cyclase by a second metal ion.  相似文献   

6.
7.
Forms of adenylate cyclase, activation and/or potentiation by forskolin   总被引:1,自引:0,他引:1  
Activation of different forms of adenylate cyclases (AC) by forskolin and displacement of [14,15-3H]dihydroforskolin binding from membranes by forskolin in the absence or presence of specific stimulatory hormone and beta, gamma-imidoguanosine 5'-triphosphate (Gpp(NH)p) have been studied. These conditions have been used to generate forskolin dose-response curves of AC activation. A plot of enzyme activation versus apparent forskolin-binding showed a linear and a nonlinear relationship, respectively, in the absence or presence of the other two stimulators. The latter relationship can be fitted by two linear regression lines with a defined intercept, the slopes of which represent two distinct binding-activation (B-A) effects. The B-A effects of forskolin for rat adipocyte and liver membranes in the absence of stimulatory hormone and Gpp(NH)p were 10 and 8 (pmol X min-1) X (pmol)-1, respectively. The B-A effects for the same membranes in the presence of the other two stimulators were 69 (high) and 13 (low) (pmol X min-1) X (pmol)-1 for adipocyte membrane, and 83 (high) and 9 (low) (pmol X min-1) X (pmol)-1 for liver membrane. The ratio of potentiation of forskolin-activated enzyme activity to the unmodified forskolin-stimulated activity (P-A ratio) was determined without the binding data. At 3 microM forskolin, with and without 230 epinephrine and 10 microM Gpp(NH)p, the P-A ratio was 3.7, decreasing to 1.1 with the addition 100 microM forskolin. The line representing a high B-A effect and a resulting high P-A ratio appears to describe the interactions between forskolin and the AC stimulated by epinephrine and Gpp(NH)p. The line of low B-A effect may represent the interaction between forskolin and the basal AC. Two peaks of AC activity were eluted from forskolin-Sepharose column. They have apparent differences in sensitivity to Gpp(NH)p and affinity for forskolin. Based on the results available thus far, with consideration for known limitations of the methodology, a working model has been proposed for forskolin activation of AC.  相似文献   

8.
《Insect Biochemistry》1980,10(2):163-168
An adenylate cyclase from the hindgut of the cockroach, Leucophaea maderae (F.), has been investigated. Several properties of the enzyme, including subcellular distribution, pH optimum, stimulation by NaF, effect of ATP and Mg2+, effect of divalent cations and effect of hindgut-stimulating neurohormone (HSN) were determined.Studies with isolated hindguts revealed that cyclic AMP potentiated the effect of HSN fourfold. However, HSN had no effect on basal- or fluoride-stimulated activities of adenylate cyclase in vitro. These observations are discussed with reference to the mode of action of HSN.  相似文献   

9.
Activation of adenylate cyclase by forskolin in rat brain and testis   总被引:2,自引:0,他引:2  
Detergent-dispersed adenylate cyclase from rat cerebrum was detected in two components, one sensitive to Ca2+ and calmodulin and another sensitive to fluoride or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). The enzyme activity of both components was markedly augmented by forskolin assayed in the presence or absence of other enzyme activators (e.g., NaF, Gpp(NH)p, calmodulin). The catalytic subunit fraction in which G/F protein was totally lacking was also activated by forskolin. During 1-35 days of postnatal development, the basal adenylate cyclase activities in either cerebrum and cerebellum particulate preparations progressively increased. While the fluoride sensitivity of the cerebrum and cerebellum enzyme increased during postnatal development, the responsiveness to forskolin remained unaltered. There was no enhancement of soluble adenylate cyclase (from rat testis) by forskolin under the assay conditions in which there was a marked stimulatory action on the particulate enzyme. The results seen with the solubilized enzyme, with either Lubrol PX or cholate, indicate that the effects of forskolin on the cyclase do not require either G/F protein or calmodulin and the results of our study of brain enzymes support this view. Data on soluble testis cyclase (a poor or absent response to forskolin by this enzyme) imply that it lacks a protein (other than the catalytic unit) which could confer greater stimulation. The present results do not rule out an alternative explanation that forskolin stimulates adenylate cyclase by a direct interaction with the catalytic subunit, if the catalytic proteins do differ widely in various species of cells and their response to this diterpene.  相似文献   

10.
Regulation of adenylate cyclase by adenosine   总被引:15,自引:0,他引:15  
Summary Adenosine may well be as important in the regulation of adenylate cyclase as hormones. Sattin and Rall first demonstrated in 1970 that adenosine was a potent stimulator of adenylate cyclase in the brain. However, adenosine is an equally potent inhibitor of adenylate cyclase in other cells such as adipocytes. The concentration of adenosine required for this regulation of adenylate cyclase is in the nanomolar range (10 to 100 nm). Both the inhibitory and stimulatory effects of low concentrations of adenosine on adenylate cyclase are antagonized by methylxanthines. This antagonism of adenosine action may account for all or part of the effects of methyl xanthines on cyclic AMP levels in many tissues. Adenosine appears to be a particularly important endogenous regulator of adenylate cyclase in brain, smooth muscle and fat cells. Under conditions in which intracellular AMP rises, adenosine formation and release is accelerated. In addition to its direct effects on adenylate cyclase, adenosine (at higher concentrations approaching millimolar) exerts multiple effects on cellular metabolism as a result of its intracellular metabolism and especially conversion to nucleotides.The effects of nanomolar concentrations of adenosine on adenylate cyclase are mediated through an adenosine site possessing strict structural specificity for the ribose moiety of the molecule (the R adenosine site) which is presumably located on the external surface of the plasma membrane. In brain, lung, platelets, bone, lymphocytes, skin, adrenals, Leydig tumors, and coronary arteries adenosine stimulates adenylate cyclase via this site. However, in rat adipocytes, brain astroblasts and ventricular myocardium adenosine inhibits adenylate cyclase through the R or adenosine site. Although the R site requires an intact ribose moiety, adenosine analogs modified in the purine ring such as N6-phenylisopropyladenosine appear to be potent agonists for this site. All effects of adenosine mediated via the R site are competitively antagonized by methyl xanthines.The effects of micromolar concentrations of adenosine appear to be mediated via a site with strict structural specificity with respect to the purine moiety of the molecule (the P or adenine adenosine site). This P site is postulated to be located on the intracellular face of the plasma membrane and mediates the effects of adenosine due to conversion of adenosine to 5-AMP or perhaps other nucleotides. The effects of high concentrations of adenosine are always inhibitory to adenylate cyclase activity, are readily demonstrated in broken cell preparations, and are unaffected by methylxanthines. An intact purine ring is required for these adenosine effects but modifications of the ribose moiety of the molecule generally increases the potency of the analog. A prime example is 2,5-dideoxyadenosine, which is the most potent known R-site specific adenosine analog.We propose a unitary model which explains both the stimulatory and inhibitory effects of low concentrations of adenosine on adenylate cyclase. In brief, adenylate cyclase is postulated to exist in three interconvertible activity states: (i) an inactive state (E0); (ii) a GTP-liganded state with high activity (EGTP); and (iii) a GDP-liganded state (EGDP) which is inactive in cells where adenosine stimulates adenylate cyclase, but active in cells where adenosine inhibits adenylate cyclase. We postulate that the enzyme cycles through these states in the following manner: the E0 state binds GTP and forms the EGTP state; hydrolysis of bound GTP converts the EGTP to the EGDP state; and release of bound GDP converts EGDP to the E0 state. The E0 state is the only form of the enzyme which can be stimulated by either hormones or GTP and its formation from the EGDP state is rate-limiting in this cycle. The conversion of EGDP to E0 regulates the ability of hormones and GTP to activate adenylate cyclase and is postulated to be adenosine sensitive.In cells where both EGDP and E0 states are inactive, adenosine stimulates adenylate cyclase activity. In cells where E0 is inactive, but EGDP is active, adenosine inhibits adenylate cyclase activity. In addition we suggest that in cells where adenosine inhibits adenylate cyclase activity (cells postulated to have an EGDP state which is active) high concentrations of GTP favor accumulation of the enzyme in EGDP and thus are inhibitory to activity. Prostaglandins may also regulate adenylate cyclase in a manner similar to that described above for adenosine.We conclude that adenosine is an important regulator of adenylate cyclase whose role has only been appreciated recently. Further studies are warranted on both its binding to cells and mechanisms by which it regulates adenylate cyclase.This work was supported by United States Public Health Service Research Grant AM-10149 from the National Institute of Arthritis, Metabolism and Digestive Diseases.  相似文献   

11.
We studied the effects of chymotrypsin on turkey erythrocyte membrane adenylate cyclase activity. Proteolysis with chymotrypsin led to a concentration- and time-dependent increase in activation of adenylate cyclase by isoproterenol + guanine nucleotides, and fluoride, and to a decrease in activation by forskolin. Maximal effects (up to 10-fold increases in fluoride- and isoproterenol + guanine nucleotide-stimulated activity, and up to 100% inhibition of forskolin-stimulated activity) occurred under similar conditions (10-20 micrograms/ml chymotrypsin for 10-15 min at 30 degrees C). Augmentation of isoproterenol + guanosine-3'-O-thiotriphosphate (GTP-gamma-S)-stimulated activity by chymotrypsin occurred only if proteolysis preceded stimulation with isoproterenol + GTP-gamma-S. Addition of isoproterenol + GTP-gamma-S to membranes before proteolysis, however, did not prevent chymotrypsin from augmenting subsequent stimulation by these agents. In contrast, addition of forskolin during proteolysis with chymotrypsin prevented the time- and concentration-dependent decline in forskolin stimulation observed with chymotrypsin. Proteolysis decreased the magnitude of stimulation at any concentration of forskolin, but did not alter the concentration dependence of forskolin stimulation (apparent half-maximum = 3 microM). The data are consistent with the existence of a chymotrypsin-sensitive site essential for forskolin stimulation of adenylate cyclase. In view of the simultaneous effect of chymotrypsin to augment fluoride- and isoproterenol + guanine nucleotide-stimulated activities, it is highly unlikely that the site is on the stimulatory guanine nucleotide binding protein. Since forskolin is thought to act directly on the catalytic unit of adenylate cyclase, and since forskolin can protect against the effect of proteolysis with chymotrypsin, the site involved may be on the catalytic unit itself.  相似文献   

12.
13.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

14.
Arginine vasopressin (AVP)- and parathyroid hormone (PTH)-sensitive adenylate cyclase were studied in the renal tissue of thyroparathyroidectomized dogs. The results indicate that AVP-sensitive adenylate cyclase activity was highest in the inner medulla followed by the middle medulla, outer medulla, and cortex, in declining order. In contrast, PTH-sensitive adenylate cyclase was absent in the inner medulla, and the highest stimulation was found in the cortex with lesser activity in outer and middle medulla. When 1 mm EGTA was included in the incubation mixture, the addition of both AVP- and PTH to the middle medullary homogenate resulted in additive responses suggesting two separate receptors for each hormone. This EGTA-induced additive effect was eliminated by the addition of calcium into the system, indicating that calcium concentration may be critical in modulating the interaction of AVP and PTH-sensitive adenylate cyclase. In contrast to some previous reports, a particulate fraction prepared from the middle medullary tissue was completely insensitive to either AVP or PTH. Hormonal sensitivity was restored by the addition of GTP or the supernatant.  相似文献   

15.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

16.
17.
Regulation of adenylate cyclase by hormones and G-proteins   总被引:2,自引:0,他引:2  
A Levitzki 《FEBS letters》1987,211(2):113-118
Over the past few years, it has become apparent that a large number of transmembrane signaling systems operate through heterotrimeric G-proteins [( 1] Gilman, A.G. (1984) Cell 36, 577-579; [2] Baker, P.F. (1986) Nature 320, 395). Adenylate cyclase is regulated by stimulatory hormones through Gs(alpha s beta gamma) and inhibitory hormones through Gi(alpha i beta gamma) [( 2]; Katada, T. et al. (1984) J. Biol. Chem. 259, 3586-3595), whereas the breakdown of phosphatidylinositol bisphosphate (PIP2) to inositol trisphosphate (IP3) and diacylglycerol (DG) by phospholipase C is probably also mediated by a heterotrimeric G-protein (Go or Gi) [1,2]. Similarly, the activation of cGMP phosphodiesterase by light-activated rhodopsin is mediated through the heterotrimeric G-protein transducin (Stryer, L. (1986) Rev. Neurosci. 9, 89-119). Other transmembrane signaling systems may also be found to involve G-proteins similar to those already recognized. Because of the emerging universality of G-proteins as transducers of receptor-triggered signals, it may be useful to evaluate the current models prevailing in the adenylate cyclase field, as these models seem to guide our way in evaluating the role of G-proteins in transmembrane signaling, in general.  相似文献   

18.
The soluble form of adenylate cyclase was extracted and purified from wild-type Neurospora crassa mycelia. Brain or N. crassa calmodulin significantly enhanced this enzyme activity in assay mixtures containing Mg2+-ATP as substrate. EGTA reverses this calmodulin activation.  相似文献   

19.
20.
We have isolated and mapped an X-linked recessive mutation in Drosophila that blocks associative learning, and have partially characterized it biochemically. The mutation affects adenylate cyclase activity. Cyclase activity from mutant flies differed from the wild-type enzyme in that it was not stimulated by calcium or calmodulin. Mutant cyclase activity did respond to guanyl nucleotides, fluoride, and monoamines, which suggests that the defect is neither in the hormone receptor nor in either known GTP-binding regulatory protein. The mutation possibly affects the catalytic subunit directly. We postulate that there is at least one other type of adenylate cyclase activity that is unaffected by the mutation and insensitive to calcium/calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号