首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Glioblastoma multiforme (GBM), the most common and aggressive brain tumor in humans, comprises a population of stem-like cells (GSCs) that are currently investigated as potential target for GBM therapy. Here, we used GSCs isolated from three different GBM surgical specimens to examine the antitumor activity of purines. Cultured GSCs expressed either metabotropic adenosine P1 and ATP P2Y receptors or ionotropic P2X7 receptors. GSC exposure for 48 h to 10–150 μM ATP, P2R ligand, or to ADPβS or MRS2365, P2Y1R agonists, enhanced cell expansion. This effect was counteracted by the PY1R antagonist MRS2500. In contrast, 48-h treatment with higher doses of ATP or UTP, which binds to P2Y2/4R, or 2′(3′)-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), P2X7R agonist, decreased GSC proliferation. Such a reduction was due to apoptotic or necrotic cell death but mostly to growth arrest. Accordingly, cell regrowth and secondary neurosphere formation were observed 2 weeks after the end of treatment. Suramin, nonselective P2R antagonist, MRS1220 or AZ11645373, selective A3R or P2X7R antagonists, respectively, counteracted ATP antiproliferative effects. AZ11645373 also abolished the inhibitory effect of Bz-ATP low doses on GSC growth. These findings provide important clues on the anticancer potential of ligands for A3R, P2Y1R, and P2X7R, which are involved in the GSC growth control. Interestingly, ATP and BzATP potentiated the cytotoxicity of temozolomide (TMZ), currently used for GBM therapy, enabling it to cause a greater and long-lasting inhibitory effect on GSC duplication when readded to cells previously treated with purine nucleotides plus TMZ. These are the first findings identifying purine nucleotides as able to enhance TMZ antitumor efficacy and might have an immediate translational impact.  相似文献   

4.
The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence, GSCs with highly invasive and highly migratory activities must assume a less-motile state and proliferate to regenerate tumor mass. Elucidating the molecular mechanism underlying this transition from a highly invasive phenotype to a less-invasive, proliferative tumor could facilitate the identification of effective molecular targets for treating GBM. Here, we demonstrate that severe hypoxia (1% O2) upregulates CD44 expression via activation of hypoxia-inducible factor (HIF-1α), inducing GSCs to assume a highly invasive tumor. In contrast, moderate hypoxia (5% O2) upregulates osteopontin expression via activation of HIF-2α. The upregulated osteopontin inhibits CD44-promoted GSC migration and invasion and stimulates GSC proliferation, inducing GSCs to assume a less-invasive, highly proliferative tumor. These data indicate that the GSC phenotype is determined by interaction between CD44 and osteopontin. The expression of both CD44 and osteopontin is regulated by differential hypoxia levels. We found that CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. Mouse brain tumors generated from CD44-knockdown GSCs exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene decreased GSC proliferation. These results suggest that interaction between CD44 and osteopontin plays a key role in tumor progression in GBM; inhibition of both CD44 and osteopontin may represent an effective therapeutic approach for suppressing tumor progression, thus resulting in a better prognosis for patients with GBM.  相似文献   

5.
6.
7.
Rationale: The malignant phenotypes of glioblastomas (GBMs) are primarily attributed to glioma stem cells (GSCs). Our previous study and other reports have suggested that both miR-139 and its host gene PDE2A are putative antitumor genes in various cancers. The aim of this study was to investigate the roles and mechanisms of miR-139/PDE2A in GSC modulation.Methods: Clinical samples were used to determine miR-139/PDE2A expression. Patient-derived glioma stem-like cells (PD-GSCs) were stimulated for immunofluorescent staining, sphere formation assays and orthotopic GBM xenograft models. Bioinformatic analysis and further in vitro experiments demonstrated the downstream molecular mechanisms of miR-139 and PDE2A. OX26/CTX-conjugated PEGylated liposome (OCP) was constructed to deliver miR-139 or PDE2A into glioma tissue specifically.Results: We demonstrated that miR-139 was concomitantly transcribed with its host gene PDE2A. Both PDE2A and miR-139 indicated better prognosis of gliomas and were inversely correlated with GSC stemness. PDE2A or miR-139 overexpression suppressed the stemness of PD-GSCs. FZD3 and β-catenin, which induced Wnt/β-catenin signaling activation, were identified as targets of miR-139 and mediated the effects of miR-139 on GSCs. Meanwhile, PDE2A suppressed Wnt/β-catenin signaling by inhibiting cAMP accumulation and GSK-3β phosphorylation, thereby modulating the self-renewal of PD-GSCs. Notably, Notch1, which is also a target of miR-139, suppressed PDE2A/miR-139 expression directly via downstream Hes1, indicating that miR-139 promoted its own expression by the miR-139-Notch1/Hes1 feedback circuit. Expectedly, targeted overexpression miR-139 or PDE2A in glioma with OCP system significantly repressed the stemness and decelerated glioma progression.Conclusions: Our findings elaborate on the inhibitory functions of PDE2A and miR-139 on GSC stemness and tumorigenesis, which may provide new prognostic markers and therapeutic targets for GBMs.  相似文献   

8.
9.
IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.  相似文献   

10.
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common “signature” of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there’s a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.  相似文献   

11.
12.
Glioblastoma multiforme patients have a poor prognosis due to therapeutic resistance and tumor relapse. It has been suggested that gliomas are driven by a rare subset of tumor cells known as glioma stem cells (GSCs). This hypothesis states that only a few GSCs are able to divide, differentiate, and initiate a new tumor. It has also been shown that this subpopulation is more resistant to conventional therapies than its differentiated counterpart. In order to understand glioma recurrence post therapy, we investigated the behavior of GSCs after primary chemotherapy. We first show that exposure of patient-derived as well as established glioma cell lines to therapeutic doses of temozolomide (TMZ), the most commonly used antiglioma chemotherapy, consistently increases the GSC pool over time both in vitro and in vivo. Secondly, lineage-tracing analysis of the expanded GSC pool suggests that such amplification is a result of a phenotypic shift in the non-GSC population to a GSC-like state in the presence of TMZ. The newly converted GSC population expresses markers associated with pluripotency and stemness, such as CD133, SOX2, Oct4, and Nestin. Furthermore, we show that intracranial implantation of the newly converted GSCs in nude mice results in a more efficient grafting and invasive phenotype. Taken together, these findings provide the first evidence that glioma cells exposed to chemotherapeutic agents are able to interconvert between non-GSCs and GSCs, thereby replenishing the original tumor population, leading to a more infiltrative phenotype and enhanced chemoresistance. This may represent a potential mechanism for therapeutic relapse.Glioblastoma multiforme (GBM) is a heterogeneous, highly invasive brain tumor, which is treated with a multimodal approach that includes surgery followed by radio- and chemotherapy.1 Temozolomide (TMZ) is currently the best chemotherapeutic drug available on the market against malignant glioma because of its ability to cross the blood–brain barrier (BBB). Even after such an aggressive therapeutic intervention, disease relapse is inevitable due to GBM''s infiltrative nature and ability to resist conventional therapies.2, 3 Thus, understanding the mechanisms of therapeutic escape and disease recurrence is crucial for developing more effective treatments against GBM.GBMs are among the first solid tumors in which the discovery of stem-like tumor-initiating cells has suggested the existence of a hierarchical model of tumorigenesis. Such a dogma proposes that a distinct population of tumor cells, referred to as glioma stem cells (GSCs), are not only responsible for driving tumor growth, but also represent a population that can survive intensive oncological therapies and give rise to recurrent malignancies.4, 5 In the clinical setting, the presence of CD133+ GSCs correlates with a shorter overall survival as well as reduced progression-free survival and is considered a critical target for successful antiglioma therapies.6The inability of conventional treatments, such as radio- and chemotherapies, to exterminate all infiltrative tumor foci is considered one of the main causes of therapeutic failure and malignant recurrence in GBM. Although the radio-resistance properties of glioma cells are fairly well established, the underlying molecular mechanisms of chemoresistance have been addressed only in a few studies.7, 8 On the basis of this, we set to investigate the biology of GSCs following TMZ therapy both in vitro and in vivo. We observed significant expansion of different GSC subpopulations after exposure to TMZ at the plasma (50 μM) and cerebral spinal fluid (CSF; 5 μM) concentrations detected in GBM patients.9, 10, 11, 12 This expansion arises from the high degree of plasticity that exists within glioma cell populations. After long-term exposure to therapeutic concentrations of TMZ, differentiated tumor cells convert into glioma stem-like cells. These newly formed GSCs acquire phenotypic and functional characteristics similar to those of native GSCs. Once implanted orthotopically in the animal brain, these newly converted GSCs demonstrate a very invasive characteristic similar to that of parental GSCs. In light of these findings, we propose that TMZ may induce specific changes in the tumor microenvironment, which facilitate a GSC-specific ‘niche'', thereby providing the necessary contextual signals to initiate the interconversion between differentiated tumor cells and GSCs. Therefore, such cellular plasticity represents a new mechanism for therapeutic resistance in GBM, and understanding this may allow us to optimize TMZ-based antiglioma chemotherapy.  相似文献   

13.
Glioblastoma (GBM) is the most common and deadly adult brain tumor. Despite aggressive surgery, radiation, and chemotherapy, the life expectancy of patients diagnosed with GBM is ∼14 months. The extremely aggressive nature of GBM results from glioblastoma stem-like cells (GSCs) that sustain GBM growth, survive intensive chemotherapy, and give rise to tumor recurrence. There is accumulating evidence revealing that GSC resilience is because of concomitant activation of multiple survival pathways. In order to decode the signal transduction networks responsible for the malignant properties of GSCs, we analyzed a collection of GSC lines using a dual, but complementary, experimental approach, that is, reverse-phase protein microarrays (RPPMs) and kinase inhibitor library screening. We treated GSCs in vitro with clinically relevant concentrations of temozolomide (TMZ) and performed RPPM to detect changes in phosphorylation patterns that could be associated with resistance. In addition, we screened GSCs in vitro with a library of protein and lipid kinase inhibitors to identify specific targets involved in GSC survival and proliferation. We show that GSCs are relatively insensitive to TMZ treatment in terms of pathway activation and, although displaying heterogeneous individual phospho-proteomic profiles, most GSCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. However, simultaneous multipathway inhibition by the staurosporin derivative UCN-01 results in remarkable inhibition of GSC growth in vitro. The activity of UCN-01 on GSCs was confirmed in two in vivo models of GBM growth. Finally, we used RPPM to study the molecular and functional effects of UCN-01 and demonstrated that the sensitivity to UCN-01 correlates with activation of survival signals mediated by PDK1 and the DNA damage response initiated by CHK1. Taken together, our results suggest that a combined inhibition of PDK1 and CHK1 represents a potentially effective therapeutic approach to reduce the growth of human GBM.  相似文献   

14.
Glioma is the one of the most lethal forms of human cancer. The most effective glioma therapy to date-surgery followed by radiation treatment-offers patients only modest benefits, as most patients do not survive more than five years following diagnosis due to glioma relapse 1,2. The discovery of cancer stem cells in human brain tumors holds promise for having an enormous impact on the development of novel therapeutic strategies for glioma 3. Cancer stem cells are defined by their ability both to self-renew and to differentiate, and are thought to be the only cells in a tumor that have the capacity to initiate new tumors 4. Glioma relapse following radiation therapy is thought to arise from resistance of glioma stem cells (GSCs) to therapy 5-10. In vivo, GSCs are shown to reside in a perivascular niche that is important for maintaining their stem cell-like characteristics 11-14. Central to the organization of the GSC niche are vascular endothelial cells 12. Existing evidence suggests that GSCs and their interaction with the vascular endothelial cells are important for tumor development, and identify GSCs and their interaction with endothelial cells as important therapeutic targets for glioma. The presence of GSCs is determined experimentally by their capability to initiate new tumors upon orthotopic transplantation 15. This is typically achieved by injecting a specific number of GBM cells isolated from human tumors into the brains of severely immuno-deficient mice, or of mouse GBM cells into the brains of congenic host mice. Assays for tumor growth are then performed following sufficient time to allow GSCs among the injected GBM cells to give rise to new tumors-typically several weeks or months. Hence, existing assays do not allow examination of the important pathological process of tumor initiation from single GSCs in vivo. Consequently, essential insights into the specific roles of GSCs and their interaction with the vascular endothelial cells in the early stages of tumor initiation are lacking. Such insights are critical for developing novel therapeutic strategies for glioma, and will have great implications for preventing glioma relapse in patients. Here we have adapted the PoRTS cranial window procedure 16and in vivo two-photon microscopy to allow visualization of tumor initiation from injected GBM cells in the brain of a live mouse. Our technique will pave the way for future efforts to elucidate the key signaling mechanisms between GSCs and vascular endothelial cells during glioma initiation.  相似文献   

15.
Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-κB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFα-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFα-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.  相似文献   

16.
17.
18.
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号