首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many marine invertebrates with biphasic life cycles, juvenile/adult traits begin to develop before metamorphosis. For structures that are present at multiple developmental stages, but have distinct larval and adult forms, it is unclear whether larval and adult structures have shared or distinct developmental origins. In this study, we examine the relationship between the larval and adult eyes in the polychaete Capitella teleta. In addition, we describe a novel marker for larval and juvenile photoreceptor cells. Infrared laser deletion of individual micromeres in early embryos suggests that the same micromeres at the eight‐cell stage that are specified to generate the larval eyes also form the adult eyes. Direct deletion of the larval eye, including the pigment cell and the corresponding photoreceptor cell, resulted in a lack of shading pigment cells in juveniles and adults, demonstrating that this structure does not regenerate. However, a sensory photoreceptor cell was present in juveniles following direct larval eye deletions, indicating that larval and adult photoreceptors are separate cells. We propose that the formation of the adult eye in juveniles of C. teleta requires the presence of the pigment cell of the larval eye, but the adult photoreceptor is either recruited from adjacent neural tissue or arises de novo after metamorphosis. These results are different from the development and spatial orientation of larval and adult eyes found in other polychaetes, in which two scenarios have been proposed: larval eyes persist and function as adult eyes; or, distinct pigmented adult eyes begin developing separately from larval eyes prior to metamorphosis.  相似文献   

2.
Reconstructing the eyes of Urbilateria   总被引:11,自引:0,他引:11  
The shared roles of Pax6 and Six homologues in the eye development of various bilaterians suggest that Urbilateria, the common ancestors of all Bilateria, already possessed some simple form of eyes. Here, we re-address the homology of bilaterian cerebral eyes at the level of eye anatomy, of eye-constituting cell types and of phototransductory molecules. The most widespread eye type found in Bilateria are the larval pigment-cup eyes located to the left and right of the apical organ in primary, ciliary larvae of Protostomia and Deuterostomia. They can be as simple as comprising a single pigment cell and a single photoreceptor cell in inverse orientation. Another more elaborate type of cerebral pigment-cup eyes with an everse arrangement of photoreceptor cells is found in adult Protostomia. Both inverse larval and everse adult eyes employ rhabdomeric photoreceptor cells and thus differ from the chordate cerebral eyes with ciliary photoreceptors. This is highly significant because on the molecular level we find that for phototransduction rhabdomeric versus ciliary photoreceptor cells employ divergent rhodopsins and non-orthologous G-proteins, rhodopsin kinases and arrestins. Our comparison supports homology of cerebral eyes in Protostomia; it challenges, however, homology of chordate and non-chordate cerebral eyes that employ photoreceptor cells with non-orthologous phototransductory cascades.  相似文献   

3.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

4.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

5.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

6.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.  相似文献   

7.
8.
Vision impairment and blindness due to the loss of the light-sensing cells of the retina, i.e. photoreceptors, represents the main reason for disability in industrialized countries. Replacement of degenerated photoreceptors by cell transplantation represents a possible treatment option in future clinical applications. Indeed, recent preclinical studies demonstrated that immature photoreceptors, isolated from the neonatal mouse retina at postnatal day 4, have the potential to integrate into the adult mouse retina following subretinal transplantation. Donor cells generated a mature photoreceptor morphology including inner and outer segments, a round cell body located at the outer nuclear layer, and synaptic terminals in close proximity to endogenous bipolar cells. Indeed, recent reports demonstrated that donor photoreceptors functionally integrate into the neural circuitry of host mice. For a future clinical application of such cell replacement approach, purified suspensions of the cells of choice have to be generated and placed at the correct position for proper integration into the eye. For the enrichment of photoreceptor precursors, sorting should be based on specific cell surface antigens to avoid genetic reporter modification of donor cells. Here we show magnetic-associated cell sorting (MACS) - enrichment of transplantable rod photoreceptor precursors isolated from the neonatal retina of photoreceptor-specific reporter mice based on the cell surface marker CD73. Incubation with anti-CD73 antibodies followed by micro-bead conjugated secondary antibodies allowed the enrichment of rod photoreceptor precursors by MACS to approximately 90%. In comparison to flow cytometry, MACS has the advantage that it can be easier applied to GMP standards and that high amounts of cells can be sorted in relative short time periods. Injection of enriched cell suspensions into the subretinal space of adult wild-type mice resulted in a 3-fold higher integration rate compared to unsorted cell suspensions.  相似文献   

9.
10.
Adult stemmata are distinctive insect photoreceptors located on the posterior surfaces of the optic lobes. They originate as larval eyes that migrate inward during metamorphosis. We used a combination of light microscopy and in situ hybridization to examine their anatomical organization in the butterfly Vanessa cardui and to test for the presence of visual pigments, the light sensitive components of the visual transduction pathway. The bilateral cluster of six internal stemmata is located near the ventral edge of the lamina. They retain the dark screening pigment and overlying crystalline cones of the larval stemmata. We found two opsin mRNAs expressed in the stemmata that are also expressed, respectively, in UV-sensitive and green-sensitive photoreceptor cells in the compound eye. A third mRNA that is expressed in blue-sensitive photoreceptor cells of the compound eye was not expressed in the stemmata. Our results reinforce the idea that the adult stemmata are not merely developmental remnants of larval eyes, but remain functional, possibly as components of the circadian input channel.This work was supported by grants from the National Science Foundation to A.D.B. (IBN-0346765) and R.H.W (IBN-9874493).  相似文献   

11.
Light and electron microscopic techniques show that the eye of the marine prosobranch gastropod, Ilyanassa obsoleta, is composed of an optic cavity, lens, cornea, retina, and neuropile, and is surrounded by a connective tissue capsule. The adult retina is a columnar epithelium containing three morphologically distinct cell types: photoreceptor, pigmented, and ciliated cells. The retina is continuous anteriorly with a cuboidal corneal epithelium. The neuropile, located immediately behind the retina, is composed of photoreceptor cell axons, accessory neurons, and their neurites. The embryonic eye is formed from surface ectoderm, which sinks inward as a pigmented cellular mass. At this time, the eye primordium already contains presumptive photoreceptor cells, pigmented retinal cells, and corneal cells. Several days later, just before hatching, the embryonic eye remains in intimate contact with the cerebral ganglion. It has no ciliated retinal cells, neuropile, optic nerve, or connective tissue capsule and its photoreceptor cells lack the electron-lucent vesicles and multivesicular bodies of adult photoreceptor cells. As the eye and the cerebral ganglion grow apart, the optic nerve, neuropile, and connective tissue capsule develop.  相似文献   

12.
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.  相似文献   

13.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
Summary Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.  相似文献   

16.
17.
18.
The cell polarity gene,crumbs (crb), has been shown to participate in the development and degeneration of theDrosophila retina. Mutations inCRB1, the human homologue ofDrosophila crb, also result in retinitis pigmentosa and Leber congential amaurosis. In this study, we used the gain-of-function approach to delineate the roles ofcrb in developingDrosophila eye. In the third-instar larval stage, eye development is initiated with photoreceptor differentiation and positioning of photoreceptor nuclei in the apical cellular compartment of retinal epithelium. In the pupal stage, differentiated photoreceptors begin to form the photosensitive structures, the rhabdomeres, at their apical surface. UsingGMR-Gal4 to drive overexpression of the Crb protein at the third-instar eye disc, we found that differentiation of photoreceptors was disrupted and the nuclei of differentiated photoreceptors failed to occupy the apical compartment. Usinghs-Gal4 to drive Crb overexpression in pupal eyes resulted in interference with extension of the adherens junctions and construction of the rhabdomeres, and these defects were stage-dependent. This gain-of-function study has enabled us to delineate the roles of Crb at selective stages of eye development inDrosophila.  相似文献   

19.
The phylogenetic position of Orbiniidae within Annelida is unresolved. Conflicting hypotheses place them either in a basal taxon Scolecida, close to Spionida, or in a basal position in Aciculata. Because Aciculata have a specific type of eye, the photoreceptive organs in the orbiniid Scoloplos armiger were investigated to test these phylogenetic hypotheses. Two different types of prostomial photoreceptor‐like sense organs were found in juveniles and one additional in subadults. In juveniles there are four ciliary photoreceptor‐like phaosomes with unbranched cilia and two pigmented eyes. The paired pigmented eyes lie beside the brain above the circumoesophageal connectives. Each consists of one pigmented cell, one unpigmented supportive cell and three everse rhabdomeric sensory cells with vestigial cilia. During development the number of phaosomes increases considerably and numerous unpigmented sense organs appear consisting of one rhabdomeric photoreceptor cell and one supportive cell. The development and morphology of the pigmented eyes of S. armiger suggest that they represent miniaturized eyes of the phyllodocidan type of adult eye rather than persisting larval eyes resulting in small inverse eyes typical of Scolecida. Moreover, the structure of the brain indicates a loss of the palps. Hence, a closer relationship of Orbiniidae to Phyllodocida is indicated. Due to a still extensive lack of ultrastructural data among polychaetes this conclusion cannot be corroborated by considering the structure of the unpigmented ciliary and rhabdomeric photoreceptor‐like sense organs. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Sorrentino M., Manni L., Lane N. J. and Burighel P. 2000. Evolution of cerebral vesicles and their sensory organs in an ascidian larva. —Acta Zoologica (Stockholm) 81 : 243–258 The ascidian larval nervous system consists of the brain (comprising the visceral ganglion and the sensory vesicle), and, continuous with it, a caudal nerve cord. In most species two organs, a statocyst and an ocellus with ciliary photoreceptors, are contained in the sensory vesicle. A third presumptive sensory organ was sometimes found in an ‘auxiliary’ ganglionic vesicle. The development and morphology of the sensory and auxiliary ganglionic vesicles in Botryllus schlosseri and their associated organs was studied. The sensory vesicle contains a unique organ, the photolith, responding to both gravity and light. It consists of a unicellular statocyst, in the form of an expanded pigment cup receiving six photoreceptor cell extensions. Presumptive mechano‐receptor cells (S1 cells), send ciliary and microvillar protrusions to contact the pigment cup. A second group of distinctive cells (S2), slightly dorsal to the S1 cells, have characteristic microvillar extensions, resembling photoreceptor. We concur with the idea that the photolith is new and derived from a primitive statocyst and the S2 cells are the remnant of a primitive ocellus. In the ganglionic vesicle some cells contain modified cilia and microvillar extensions, which resemble the photoreceptor endings of the photolith. Our results are discussed in the light of two possible scenarios regarding the evolution of the nervous system of protochordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号