首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Quality by Design (QbD) is one of the most important tools for the implementation of Process Analytical Technology (PAT) in biopharmaceutical production. For optimal characterization of a monoclonal antibody (mAb) upstream process a stepwise approach was implemented. The upstream was divided into three process stages, namely inoculum expansion, production, and primary recovery, which were investigated individually. This approach enables analysis of process parameters and associated intermediate quality attributes as well as systematic knowledge transfer to subsequent process steps. Following previous research, this study focuses on the primary recovery of the mAb and thereby marks the final step toward a holistic characterization of the upstream process. Based on gained knowledge during the production process evaluation, the cell viability and density were determined as critical parameters for the primary recovery. Directed cell viability adjustment was achieved using cytotoxic camptothecin in a novel protocol. Additionally, the cell separation method was added to the Design of Experiments (DoE) as a qualitative factor and varied between filtration and centrifugation. To assess the quality attributes after cell separation, the bioactivity of the mAb was analyzed using a cell-based assay and the purity of the supernatant was evaluated by measurement of process related impurities (host cell protein proportion, residual DNA). Multivariate data analysis of the compiled data confirmed the hypothesis that the upstream process has no significant influence on the bioactivity of the mAb. Therefore, process control must be tuned towards high mAb titers and purity after the primary recovery, enabling optimal downstream processing of the product. To minimize amounts of host cell proteins and residual DNA the cell viability should be maintained above 85% and the cell density should be controlled around 15 × 106 cells/ml during the cell removal. Thereby, this study shows the importance of QbD for the characterization of the primary recovery of mAbs and highlights the useful implementation of the stepwise approach over subsequent process stages.  相似文献   

2.
Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry due to their widely used application as human therapeutic and diagnostic agents. As such, mAb require to exhibit human‐like glycolization patterns. Therefore, recombinant Chinese hamster ovary (CHO) cells are the favored production organisms; many relevant biopharmaceuticals are already produced by this cell type. To optimize the mAb yield in CHO DG44 cells a corelation between stress‐induced cell size expansion and increased specific productivity was investigated. CO2 and macronutrient supply of the cells during a 12‐day fed‐batch cultivation process were tested as stress factors. Shake flasks (500 mL) and a small‐scale bioreactor system (15 mL) were used for the cultivation experiments and compared in terms of their effect on cell diameter, integral viable cell concentration (IVCC), and cell‐specific productivity. The achieved stress‐induced increase in cell‐specific productivity of up to 94.94.9%–134.4% correlates to a cell diameter shift of up to 7.34 μm. The highest final product titer of 4 g/L was reached by glucose oversupply during the batch phase of the process.  相似文献   

3.
Glycosylation is an important post-translational modification during protein production in eukaryotic cells, and it is essential for protein structure, stability, half-life, and biological functions. In this study, we produced various monoclonal antibody (mAb) glycoforms from Chinese hamster ovary (CHO) cells, including the natively glycosylated antibody, the enriched G0 form, the deglycosylated form, the afucosylated form, and the high mannose form, and we compared their intrinsic properties, side-by-side, through biophysical and biochemical approaches. Spectroscopic analysis indicates no measureable secondary or tertiary structural changes after in vitro or in vivo modification of the glycosylation pattern. Thermal unfolding experiments show that the high mannose and deglycosylated forms have reduced thermal stability of the CH2 domain compared with the other tested glycoforms. We also observed that the individual domain’s thermal stability could be pH dependent. Proteolysis analysis indicates that glycosylation plays an important role in stabilizing mAbs against proteases. The stability of antibody glycoforms at the storage condition (2–8 °C) and at accelerated conditions (30 and 40 °C) was evaluated, and the results indicate that glycosylation patterns do not substantially affect the storage stability of the antibody we studied.  相似文献   

4.
Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett‐Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow‐up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163–170, 2017  相似文献   

5.
HuCD25mAb is a humanized anti-CD25 antibody which has the same amino acid sequence as daclizumab (Zenapax, Roche). HuCD25mAb is expressed in Chinese hamster ovary (CHO) cells while daclizumab is expressed in the NSO myeloma cell line. A comparative study was performed to evaluate the pharmacokinetics and pharmacodynamics between huCD25mAb and daclizumab in a two-dose regimen incorporating triple immunosuppressant treatment regimens (MMF, CsA and steroids). Fifteen patients were enrolled and randomized to receive intravenous infusion of either huCD25mAb (n = 10) or daclizumab (n = 5) at a dosage of 1 mg·kg−1 on operation day 0 and post-operation day 14. Serum concentrations of huCD25mAb and daclizumab were measured by a validated competitive ELISA. Subgroups of CD3+, CD25+, CD4+ and CD8+ lymphocytes were monitored periodically by flow cytometry. The concentration-time curves of huCD25mAb and daclizumab were found to fit well to a one-compartment model. A significant decline of proportion (%) of CD3-CD25+ and CD3+CD25+ lymphocytes was observed 30 min after first infusion on day 0 (3.40 ± 1.83 to 0.03 ± 0.07, 3.35 ± 2.02 to 0.37 ± 0.49), and these levels remained low for at least 70 days (0.03 ± 0.05, 0.31 ± 0.47). All pharmacokinetic parameters of huCD25mAb seemed similar to those of daclizumab. The two-dose huCD25mAb regimen was as effective as daclizumab in rapidly achieving high therapeutic concentration in the treated patients, and a significant decrease of CD3CD25+ and CD3+CD25+ lymphocytes was demonstrated. This suggests that two-dose regimen is feasible in maintaining host immunosuppression and may provide an effective and economical strategy for reducing incidence of acute graft rejection.Key words: CD25, pharmacokinetics, kidney transplantation, enzyme immunoassay, flow cytometry, monoclonal antibody  相似文献   

6.
The successful development and regulatory approval of originator and biosimilar therapeutic proteins requires a systems approach to upstream and downstream processing as well as product characterization and quality control. Innovation in process design and control, product characterization strategies, and data integration represent an ecosystem whose concerted advancement may reduce time-to-market and further improve comparability and biosimilarity programs. The biopharmaceutical community has made great strides to this end, yet there currently exists no pre-competitive monoclonal antibody (mAb) expression platform for open innovation. Here, we describe the development and initial expression of an intended copy of the NISTmAb using three non-originator murine cell lines. It was found that, without optimization and in culture flasks, all three cell lines produce approximately 100 mg mAb per liter of culture. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, nuclear magnetic resonance spectroscopy, intact mass spectrometry, and surface plasmon resonance were used to demonstrate that the products of all three cell lines embody quality attributes with a sufficient degree of sameness to the NISTmAb Reference Material 8671 to warrant further bioreactor studies, process improvements and optimization. The implications of the work with regard to pre-competitive innovation to support process design and feedback control, comparability and biosimilarity assessments, and process analytical technologies are discussed.  相似文献   

7.
The beneficial effect of antibody therapy in human disease has become well established mainly for the treatment of cancer and immunological disorders. The inherent monospecificity of mAbs present limitations to mAb therapy which have become apparent notably in addressing complex entities like infectious agents or heterogenic endogenous targets. For such indications mixtures of antibodies comprising a combination of specificities would convey more potent biological effect which could translate into therapeutic efficacy. Recombinant polyclonal antibodies (rpAb) consisting of a defined number of well-characterized mAbs constitute a new class of target specific antibody therapy. We have developed a cost-efficient cell banking and single-batch manufacturing concept for the production of such products and demonstrate that a complex pAb composition, rozrolimupab, comprising 25 individual antibodies can be manufactured in a highly consistent manner in a scaled-up manufacturing process. We present a strategy for the release and characterization of antibody mixtures which constitute a complete series of chemistry, manufacturing, and control (CMC) analytical methods to address identity, purity, quantity, potency, and general characteristics. Finally we document selected quality attributes of rozrolimupab based on a battery of assays at the genetic-, protein-, and functional level and demonstrate that the manufactured rozrolimupab batches are highly pure and very uniform in their composition.  相似文献   

8.
Remsima® (infliximab) was recently approved as the world''s first biosimilar monoclonal antibody (mAb) in both the European Union and Korea. To achieve this, extensive physicochemical characterization of Remsima® in relation to Remicade® was conducted in order to demonstrate the highly similar properties between the two molecules. A multitude of state-of-the-art analyses revealed that Remsima® has identical primary as well as indistinguishable higher order structures compared with the original product. Monomer and aggregate contents of Remsima® were also found to be comparable with those of Remicade®. In terms of charge isoforms, although Remsima® was observed to contain slightly less basic variants than the original antibody, the difference was shown to be largely due to the presence of C-terminal lysine. On the other hand, this lysine was found to be rapidly clipped inside serum in vitro and in vivo, suggesting it has no effect on the biological potency or safety of the drug. Analysis of the glycan contents of the antibodies showed comparable glycan types and distributions. Recent results of clinical studies have further confirmed that the two antibody products are highly similar to each other. Based on this research as well as previous clinical and non-clinical comparability studies, Remsima® can be considered as a highly similar molecule to Remicade® in terms of physicochemical properties, efficacy, and safety for its final approval as a biosimilar product to Remicade®.  相似文献   

9.
In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10–15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na+, osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.  相似文献   

10.
11.
Pseudomonas aeruginosa (P. aeruginosa) is a highly pathogenic bacteria involved in numerous diseases among which, are urinary tract infections (UTIs). The pyocyanin secreted as a virulence factor by this bacterium has many beneficial applications but its high cost remains an obstacle for its widespread use. In this study, a total of fifty urine isolates were identified as P. aeruginosa. All strains produced pyocyanin pigment with a range of 1.3–31 µg/ml. The highest producer clinical strain P21 and the standard strain PA14 were used in optimization of pyocyanin production. Among tested media, king’s A fluid medium resulted in the highest yield of pyocyanin pigment followed by nutrient broth. Growth at 37 °C was superior in pyocyanin production than growth at 30 °C. Both shaking and longer incubation periods (3–4 days) improved pyocyanin production. The pyocyanin yield was indifferent upon growth of P21 at both pH 7 and pH 8. In conclusion, the optimum conditions for pyocyanin production are to use King’s A fluid medium of pH 7 and incubate the inoculated medium at 37 °C with shaking at 200 rpm for a period of three to four days.  相似文献   

12.
This study was aimed to assess the effects of calcium lactate (CL) on quality, shelf-life and storage physiology of bitter gourd. Fruits were dipped in the aqueous solution of CL (50, 75, and 100 mM) and stored at 10 °C and 85–95% relative humidity (RH). The changes in physical, biochemical and enzymological parameters were recorded at five days interval. The results showed that in CL@100 mM treated fruit, physiological loss in weight (PLW) and decay incidence were minimized. Conversely, their firmness, total phenolics, antioxidants and total chlorophyll retained at higher side. The CL @ 75 mM was able to retain higher ascorbic acid up to 20 days while CL@100 mM was effective in controlling pectin methylesterase (PME) activity and increasing the inhibitory activity of α-amylase and α-glucosidase. Therefore, our observations suggested that by applying CL@100 mM, 5 days extra (20 days) shelf-life of bitter gourd fruit can be achieved with notable retention of biochemical compounds over untreated fruit (15 days with poor retention of important nutrients).  相似文献   

13.
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g−1). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40–50 °C and pH 6–9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca2+, Na+ and Mg2+ showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.  相似文献   

14.
Phytase production by Penicillium purpurogenum GE1 isolated from soil around bean root nodules was investigated by solid state fermentation (SSF) using mixed substrates consisted of corn cob and corn bran. The SSF conditions were optimized by using one-variable–at-a-time strategy. The optimum conditions for phytase production were at 27 °C, pH 8 and 66% moisture content. The study of different carbon and nitrogen sources revealed that glucose and peptone registered the highest enzyme productivity (92 ± 5.6 U/g ds, 125 ± 4.9 U/g ds). Among different surfactants, maximum phytase productivity was observed with Tween 80 at 0.001 concentrations (170 ± 4.2 U/g ds). A Box–Behnken design was employed to investigate the optimization of the most significant variables affecting the enzyme production. Maximal phytase production was detected after the addition of (g/5 g ds): 0.75 glucose, 0.375 peptone and 0, 01 tween 80. This result represented an improvement in phytase production of 2.6 folds when compared to that previously obtained using the basal medium under the same cultivation conditions. The generated model was found to be very adequate for phytase production (90% accuracy) as the experimental value was 444 ± 3.5 U/g ds compared to 401 U/g ds for the predicted value. In brief, the production of phytase using corn cob and corn bran is a novel and cheap way for the production of this important enzyme and opens a new way for researchers to discover and explore this arena.  相似文献   

15.
Peanut, the only cash crop of rainfed areas of Pakistan, is facing immense challenges due to global warming. Climatic factors particularly the temperature fluctuations and rain pattern shift significantly impact the production and yield of peanut and unavailability of resilient varieties exacerbate this impact. To deal with the cropping pattern change and yield losses, due to climate vagaries, a study was conducted to develop early maturing hybrids using line into tester mating design. The F1 hybrids from the parental lines were produced in the year 2018 using Line × Tester mating design and then grown in the field in the year 2019 for further evaluation. The hybrids were evaluated based on the early maturity and yield-related attributes in comparison with the parental lines. Based on the general combining ability estimate, line V-3 (Golden), was found as best parent with highly significant values for plant height, days to peg formation, days to maturity, number of pegs per plant, number of pods per plants, number of seeds per plant, 100 pod weight 100 seed weight. Similarly, tester V-7 (PI 635006 01 SD) showed highly significant results of GCA for days to germination, day to 50% flowering, plant height, days to peg formation, days to maturity, number of pegs per plant, number of pods per plants, number of seeds per plant, 100 kernel weight, shelling percentage. All the combinations were evaluated for specific combining ability and significant results were observed for V-3 × V-4 (Golden × PI 619175 01 SD) and V-1 × V-6 (BARI-2000 × PI 564846 01 SD) by developing or maturity and yield-related attributes. The hybrid combinations V-3 × V-5 (Golden × PI 635006 01 SD) followed by V-3 × V-6 showed highly significant results for mid parent heterosis and better parent heterosis for days to 50% flowering, plant height, days to peg formation, number of pegs, days to maturity, number of mature seeds per plant, shelling ratio, 100 pod weight and 100 kernel weight. These parents and hybrid combinations with early maturity genes and high yield attributes can further be used for the development of short duration variety.  相似文献   

16.
Among coastal plant species at risk from rapid environmental changes is the North American Great Lakes dune endemic Cirsium pitcheri. Despite being listed as federally threatened, little is known about how C. pitcheri seed attributes influence germination and dormancy‐break patterns in the context of climate change. Following a previous work where we found differences in the number and weight of C. pitcheri seeds among capitulum positions and study sites, here we examine the effects of seed attributes (capitulum position, seed weight, and site of origin) on the proportion and timing of C. pitcheri seed germination under temperature treatments that simulate projected warming in the Great Lakes (20/10, 25/10, and 30/10°C day/night). Our results demonstrate that C. pitcheri produces diverse cohorts of seeds with seed attributes that significantly influence the timing and probability of germination over a 3‐year soil seed bank. Cirsium pitcheri seed germination proportions were highest at 20°C and decreased successively at 25 and 30°C. Seeds from terminal capitula also had higher germination proportions and took longer to germinate than those from secondary capitula. Lastly, the effect of seed weight on germination probability depended on site of origin and capitulum position, with all effects varying in size and significance over time. Ultimately, our results highlight the considerable differences in germination patterns exhibited by seeds from different capitulum positions and sites of origin and provide insight into the dormancy‐break patterns that C. pitcheri might experience under predicted temperature rise in the Great Lakes region of North America.  相似文献   

17.
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1‐checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. Biotechnol. Bioeng. 2015;112: 141–155. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

18.
19.
Cyanidin-3-glucoside (C3Ghv) compounds were purified and isolated from the anthocyanins extract of Haematocarpus validus. C3Ghv were studied for antioxidant and cytoprotective properties on pancreatic β-cells of rat insulinoma cells (RINm5F) against the oxidative stress induced by streptozotocin (STZ). The exposure of RINm5F cells to C3Ghv at concentration of 100 and 200 μg/mL for 24 h reduced 10% and 23% cell viability, respectively, as compared to control cells. The pre-treatment of RINm5F cells with C3Ghv (50 µg/mL) increased the cell viability by 29% as compared to control, on being treated with STZ (10 mM) for 24 h. The pre-treatment of RINm5F cells with C3Ghv (50 µg/mL) for 24 h followed by exposure to STZ (10 mM) for 1 h decreased the generation of reactive oxygen species (ROS) by 57%, generation of nitric oxide by 22.8%, generation of malondialdehyde (MDA) by 32%, the production of p-ERK ½ by 83%, p-JNK by 82.6%, p-MEK by 57%, and p-p38 MAPK by 64%. The C3Ghv treatment also decreased the ratio of apoptotic proteins Bax to Bcl-2 by 61%, and improved the M2 phase of cell cycle by 75% as compared to STZ treated cells. The overall results suggest that C3Ghv protects pancreatic β-cells against oxidative stress-induced apoptosis, thereby implicating the significant role of C3Ghv as an antidiabetic agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号