首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hasezawa S  Nozaki H 《Protoplasma》1999,209(1-2):98-104
Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of beta-l,3-glucan (callose) and fibrils of beta-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

2.
S. Hasezawa  H. Nozaki 《Protoplasma》1999,209(3-4):98-104
Summary Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of β-l,3-glucan (callose) and fibrils of β-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

3.
Abstract Transmission electron microscopy of chloroplasts isolated by osmotic lysis of pea leaf protoplasts has revealed crystalline arrays of ribosomal particles associated with the thylakoid membranes. Optical diffraction techniques have established the crystallinity of the arrays and an image-enhancement technique has given an indication of ribosomal macrostructure. A model of crystal-packing is presented. This apparently artefactual induction of ribosome crystals should provide a valuable approach towards the elucidation of the details of the structure of chloroplast ribosomes.  相似文献   

4.
Square arrays and their role in ridge formation in human lens fibers   总被引:4,自引:0,他引:4  
Square arrays in human lens fibers were studied with freeze-fracture and thin-section TEM. In superficial fibers a number of patches of square array particles in the P face and pits in the E face are found in the smooth membrane. In the deeper cortex and the nucleus, fiber cells have undulating membranes and many ridges. Numerous patches of the particles (P face) are distributed in the concave regions, and the pits (E face) in the convex areas of the bumpy membrane. In most ridges, patches of the particles occur at regular intervals in the "valley" portion, while the pits are on the "crest" portion of ridges. Also, continuous square arrays having the same "valley" location as the regularly arranged patches are found in areas with extensive ridge patterns. The overlapping of the outer portions of two adjacent square arrays is found on the sides between the "crest" and the "valley" of the ridges. Structurally, square arrays are located in a nonjunctional part of the membrane; in an orthogonal crystalline arrangement; and with a particle size of about 6 nm and center-center spacing about 6.4 nm. They are structurally different from gap junctions found in the lens fibers. Thin-section studies reveal two types of cellular contacts: thin pentalamellar structures (about 12-13 nm in overall thickness) associated with the ridge patterns are believed to be square arrays; thick heptalamellar structures (about 16-17 nm in overall thickness) with a narrow gap in between the two central laminae are believed to be gap junctions. This study strongly suggests that square arrays are specifically involved in ridge formation in human lens fibers.  相似文献   

5.
Summary Freeze-fracture preparations of protoplasts isolated from cell suspension cultures and leaf mesophyll tissue have been examined by transmission electron microscopy. During the first 72 hours of cell wall regeneration, the 8–10nm intramembraneous particles were randomly distributed on both the protoplasmic and extracellular fracture faces of the plasma membranes of protoplasts frozen and fractured in the culture medium without glutaraldehyde fixation or cryoprotection. Incubation of living protoplasts in culture medium containing 20% v/v glycerol as cryoprotectant prior to freezing without fixation caused deformation of the plasma membrane in the form of protrusions accompanied by particle aggregation on the protoplasmic fracture face of the membrane. Intramembraneous particle aggregation was not observed in protoplasts fixed in glutaraldehyde prior to incubation in medium containing glycerol. The aggregation of particles into hexagonal close packed arrays and elongate chains is discussed in relation to a previous report in the literature of the possible involvement of intramembraneous particle complexes in microfibril formation by isolated higher plant protoplasts.  相似文献   

6.
Summary Immunofluorescence methods were developed for examining the distribution of microtubules in freshly isolated and cultured protoplasts and regenerated somatic embryos of white spruce (Picea glauca). Freshly isolated protoplasts consisted of both uniand multinucleate types. Uninucleate protoplasts established parallel cortical microtubules during cell wall formation and cell shaping, divided within 24 h and developed into somatic embryos in culture. Dividing cells were characterized by preprophase bands (PPBs) of microtubules, atypical spindle microtubules focused at the poles and a typical phragmoplast at telophase. Multinucleate protoplasts also established parallel arrays of cortical microtubules during cell wall formation. In addition their nuclei divided synchronously within 4 days, then cell walls formed between the daughter nuclei. Individual multinucleate protoplast-derived colonies subsequently gave rise to elongate suspensor cells thereby forming embryo-like structures by 7 days.  相似文献   

7.
Isolated protoplasts obtained from leaves and from stem callus cultures of Skimmia japonica were cultivated for 72 h to regenerate a new cell wall. During this process the structural changes in the protoplasts and at the surface of the plasmalemma were studied in ultrathin sections and after freeze-fracturing and deep-etching.The cultured protoplasts show an apparent increase in cell organelles compared to the freshly isolated protoplasts. In particular, mitochondria, endoplasmic reticulum, and ribosomes, many of them appear as polysomes, become numerous. Moreover, special connections between the ER and the plasmalemma are visible. Most important are the fracture faces of the plasmalemma with two different arrangements of membrane-bound particles: (1) particles in hexagonal arrays and (2) rows of ca. 14 particles. Their orientation usually conforms with that of the regenerated microfibrils of the cell wall. According to these results the following model for microfibril synthesis and orientation in higher plants is proposed: While the cytoplasmic activity is involved in the production of cellulose precursors and enzymes, the hexagonal arrays may respresent specialized regions for the outward passage of these cellulose precursors. The rows of membrane-associated particles may function as a linear enzyme complex (matrix) for microfibril biosynthesis and orientation.Abbreviations ER endoplasmic reticulum - IAA -indolylacetic acid - 2,4-D 2,4-dichlorophenoxy acetic acid  相似文献   

8.
Fine structure of isolated mesophyll protoplasts of tobacco   总被引:1,自引:1,他引:0  
Summary Protoplasts of palisade cells isolated enzymatically from mature leaves of tobacco were studied with the electron microscope. A cell wall was completely absent, and the chloroplasts contained large inclusion bodies which were believed to be a crystalline form of fraction I protein. The fine structure of the protoplasts was otherwise that of healthy mesophyll cells, indicating that they are in a good physiological state. Some protoplasts were multinucleate as a result of fusion during the isolation process.  相似文献   

9.
The reversion of protoplasts of Bacillus licheniformis 6346 His- on a medium containing 2.5% agar has been studied in sectioned material after reaction with a ferritin-conjugated antibody specific to the peptidoglycan isolated from the walls of the bacilli. Freeze etching has also been used. Fibrils of material reacting with the antibody have been detected emerging from isolated areas of the protoplasts after 3 h of incubation. This material gradually covers the cell and can eventually (at 6 h) be seen in freeze-etched preparations as a fringe of up to 400 nm around the cells and covering the surfaces with particles that can be removed by lysozyme. At later stages the wall begins to take on a compact, well-defined appearance that can be seen in sections; however, the cells are still grossly deformed. A transitory emergence, beyond the wall of long fibers of 6 nm in diameter, takes place after about 12 h of incubation. These fibers react with the conjugated antibody and after freeze etching show a regular banded structure. They are probably indentical with the fibers isolated elsewhere (Elliott et al., 1975) and shown to contain all the wall constituents (i.e., peptidoglycan, teichoic acid, and teichuronic acid). These fibers are not detectable in the final stages of reversion.  相似文献   

10.
The formation of cell wall fibres at the surface of isolated leaf protoplasts has been studied by scanning electron microscopy. Fibres are not formed on incubated protoplasts until a lag period has elapsed. This period is about 8 h for leaf protoplasts of Nicotiana tabacum and about 45 h for leaf protoplasts of Antirrhinum majus. In the case of Antirrhinum protoplasts the length of the lag period is dependent on the concentration of osmoticum present during the incubation period. If regenerating protoplasts are briefly treated with dilute cellulase, the newly formed wall is completely digested. Such protoplasts are capable of producing new fibres at the surface within minutes of their return to a nutrient medium. These results are discussed in terms of the likely source of the lag period and its significance in wall regeneration studies.Abbreviations MS culture medium used at full strength - 0.1 MS culture medium used at one tenth full strength  相似文献   

11.
In the central nervous system (CNS) of full-grown larvae of the blowfly Calliphora erythrocephala, the glial-ensheathed nerve cells are completely surrounded by a layer of perineurial cells which form a “blood-brain barrier” between the circulating haemolymph and the CNS. A variety of intercellular junctions, including gap and tight junctions, are found between adjacent perineurial cells and some also between apposing glial cells; these have been characterized by freeze-fracturing as well as by tracer studies and analysis of thin sections. They are found not to be present between such cells in the undifferentiated CNS in the newly hatched larvae, nor are the nerve cells encompassed by glial cells; ionic lanthanum can penetrate to the axonal surfaces at this stage. However, over the 5 days of larval growth and development the glial cells produce attentuated cytoplasmic processes that ensheath the nerve cells, and the perineurium is formed; junctional complexes are assembled and a larval blood-brain barrier is produced which excludes tracers. Freeze-fracture preparations suggest that the inverted gap junctions which develop have done so by migration of individual intramembranous EF particles to form, at first, linear arrays and small clusters and, ultimately, macular aggregations in the perineurium; these lie between the undulating rows of PF particles forming the septate junctions. These septate junctions are formed by the organization of arrays of PF particles into multiple rows. Extensive PF particles fusing into ridges with EF grooves to form perineurial “tight” junctions are also observed, seemingly in the process of development; entry of exogenous lanthanum followed by its exclusion parallels the completion of ridge formation. These ridges are simple linear arrays of particles which may be discontinuous, lying in parallel with one another and the surface. Clustered particle arrays as well as scattered short ridges on the axonal PF, however, appear to be present unchanged throughout larval life; their role may therefore be associated with neural membrane function although there are suggestions that some may form axo-glial junctions. This is the first report on the lateral migration of intramembranous particles as the mode of formation of gap junctions in the nervous system of an invertebrate.  相似文献   

12.
The cell surface of Corynebacterium glutamicum grown on solid medium was totally covered with a highly ordered, hexagonal surface layer. Also, freeze-fracture revealed two fracture surfaces which were totally covered with ordered arrays displaying an hexagonal arrangement and the same unit cell dimension as the surface layer. The ordered arrays on the concave fracture surface, closest to the cell surface, were due to the presence of particles while those on the convex fracture surface were their imprints. The same cells grown on liquid medium displayed a cell surface and fracture surfaces only partially covered with ordered arrays. In this case, the ordered regions had the same relative position on the cell surface and on the fracture surfaces. All ordered arrays were totally absent in a mutant for cspB, the gene encoding PS2, one of the two major cell wall proteins. Treatment of the cells with proteinase K caused the gradual alteration of PS2 into a slightly lower molecular mass form. This was accompanied by a concomitant disappearance of the ordered fracture surfaces followed by the detachment of the ordered surface layer from the cell as large ordered patches displaying the same lattice symmetry and dimension as those of the surface layer. The ordered patches were isolated. They contained the totality of PS2 initially associated with the cell. We conclude that the highly ordered surface layer of the intact cell was composed of PS2 interacting strongly with some cell wall material leading to its organization. This organized cell wall material produced the ordered fracture surfaces. We show that in the absence of intact PS2 protein on the cell wall, the same cell wall material was not organized and formed a structureless smooth layer.  相似文献   

13.
Gap junction dynamics: reversible effects of hydrogen ions   总被引:9,自引:8,他引:1       下载免费PDF全文
Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junctions of intact cells by uncoupling treatments, indicating that H+, like divalent cations, could be an uncoupling agent. The freeze-fracture appearance of both control and low pH-treated gap junctions is not altered by glutaraldehyde fixation and cryoprotective treatment, as suggested by experiments in which gap junctions of both intact cells and isolated fractions are freeze- fractured after rapid freezing to liquid N2 temperature according to Heuser et al. (13). In junctions exposed to low pH, the particles most often form orthogonal and rhombic arrays, frequently fused with each other. A number of structural characteristics of these arrays suggest that the particles of lens fiber gap junctions may be shaped as tetrameres.  相似文献   

14.
Asynchronous populations of the budding yeast Saccharomyces cerevisiae strain AG1-7 were examined by freeze-fracture electron microscopy for ultrastructural changes occurring in response to changes in the environment, specifically the following: temperature (23 or 37 degrees C); cell density (exponential, early stationary, and stationary phases); various periods of nitrogen starvation at low cell density, and return of nitrogen-starved cells to nitrogen-replete medium. This information has been gathered in preparation for ultrastructural examination of comparable responses of temperature-sensitive cell-cycle mutants. The plasma membrane was found to be particularly responsive to changes in environment. A high proportion (75%) of cells in exponential phase populations at 37 degrees C displayed paracrystalline arrays of plasma membrane particles, whereas this proportion was much lower (20%) at 23 degrees C in the same medium; plasma membrane grooves were longer at 37 than at 23 degrees C. In budded cells, the mother cell displayed paracrystalline arrays more frequently than the bud. Entry of cells into stationary phase, either through permitting population growth or by limiting nitrogen supply, resulted in increases in numbers of paracrystalline arrays and grooves. Groove depth also increased. The paracrystalline-array and groove-density responses were independent, both during entry into stationary phase and during the subsequent lag phase. Unusual groove forms appeared during stationary phase in high cell density populations, but not in low cell density nitrogen-starved populations. "Aggregate" and "geometric" tonoplast forms, previously described in strain A364A when grown under some of the conditions used here, were not found in AG1-7 under any of the conditions used here. It was demonstrated that particle-free patches can arise rapidly on the tonoplast of AG1-7 in response to temperature change from 37 to 23 degrees C. During stationary phase, spherosomes (lipid droplets) increased in size, particularly in response to nitrogen depletion. After 72 h of nitrogen starvation, about 10% of cell volume consisted of spherosomes. Changes in vacuolar content and mitochondrial form were also noted during entry into stationary phase.  相似文献   

15.
A nonoccluded virus was isolated from larvae of the army cutworm, Euxoa auxiliaris. Infected larvae became lethargic and shrunken, and death usually occurred 12–20 days after infection. The primary site of viral infection and replication appeared to be the nuclei of midgut epithelial cells; however, virus replication also occurred in cells of the tracheal matrix and in muscle. Nuclei in early stages of the infection contained large granular areas with the chromatin scattered near the nuclear membrane. These areas differentiated into viral particles that measured 24 nm and formed crystalline arrays, occasionally 10 μm long. Disruption of the nuclear membrane liberated these arrays of particles into the cytoplasm. Fluorescence microscopy studies indicated that the viral particles contained DNA. The crystalline arrays were Feulgen positive. The virus also infected larvae of the armyworm, Pseudaletia unipuncta, and corn carworm, Heliothis zea, in laboratory tests.  相似文献   

16.
Intact cells and protoplasts of the yeastSaccharomyces cerevisiae were grown in liquid medium with radioactive glucose as the sole carbon source, and the kinetics of radioactivity incorporation into β-glucan and chitin fractions were measured and compared. While the synthesis of β-glucan by protoplasts started early after their being suspended in the growth medium, the onset of chitin formation was delayed about 3 h and, unlike β-glucan, its formation depended on synthesis of undisturbed protein. In the intact cells, the ratio of β-glucan to chitin was constantly around 12 during growth; while in protoplasts this ratio steadily decreased in the course of cultivation and reached the value of 1.1 after 16h, which can be ascribed to the higher rate of chitin formation by protoplasts in comparison with normal cells. The deproteinized polysaccharide nets formed on the surface of protoplasts that had been incubated in the presence and in the absence of cycloheximide did not differ substantially in their morphology. The only observed difference was the presence of granular material in the samples from control protoplasts grown in the absence of cycloheximide.  相似文献   

17.
Structural analysis by electron microscopy of biological macromolecules or macromolecular assemblies embedded in rapidly frozen, vitreous ice has made great advances during the last few years. Electron cryo-microscopy, or cryo-EM, can now be used to analyse the structures of molecules arranged in the form of two-dimensional crystals, helical arrays or as single particles with or without symmetry. Although it has been possible, using crystalline or helical specimens, to reach a resolution adequate to build atomic models (4 A), there is every hope this will soon also be possible with single particles. Small and large single particles present different obstacles to progress.  相似文献   

18.
Enzymatic digestion of the cell wall of Brassica napus hypocotyls gave a heterogeneous suspension of protoplasts with the cortical microtubules (CMTs) randomly organised or CMTs organised in parallel. The effect of variable g- influences has been tested on CMT organisation. In contrast to the 1 g- protoplasts, which reorganised the CMTs into parallel arrays during the 96 h test period, the frequency of randomly-oriented CMTs in the protoplasts exposed to simulated weightlessness (0 g ) on a 2-D clinostat increased significantly during the same period. The opposite effect was obtained when the protoplasts were exposed to hyper -g (7 or 10 g ), where the reorganisation of the CMTs into parallel arrays was accelerated compared to the 1 and 0 g- protoplasts. These results indicate that a unidirectional gravity force is a necessity for the reorganisation of CMTs in protoplasts to parallel arrays and that CMTs act as responding elements that are able to sense different levels of gravity. Besides the inability of the protoplasts to reorganise the CMTs into parallel arrays, the quantity of CMTs in the individual protoplast decreased during 4 days of simulated weightlessness, both compared to the CMTs quantity in the protoplasts immediately after isolation and compared to the 1 g- and hyper -g- protoplasts after 24 and 48 h of g- exposure. The size of the protoplasts was also affected by the g- exposure. Protoplasts exposed to simulated 0 g increased significantly after 24 and 48 h, whereas the 1 g- and 10 g- protoplasts maintained the same size during the 48 h test period.  相似文献   

19.
Freeze fracturing and deep etching have been used to study thermotropic lateral translational motion of intramembrane particles and membrane surface anionic groups in the inner mitochondrial membrane. When the inner membrane is equilibrated at low temperature, the fracture faces of both halves of the membrane reveal a lateral separation between intramembrane particles and particle free, large smooth patches. Such separation is completely reversed through free lateral translational diffusion by reversing the temperature. The low temperature induced, particle-free, smooth membrane patches appear to represent regions of protein-excluding, ordered bilayer lipid which form during thermotropic liquid crystalline to gel state phase transitions. When polycationic ferritin is electrostatically bound to anionic groups exposed at the membrane surface at concentrations which inhibit the activities of cytochrome c oxidase and succinate permease, the bound ferritin migrates with intramembrane particles during the thermotropic lateral separation between the membrane particles and smooth patches. When bound polycationic ferritin is cross-bridged with native ferritin, an artificial peripheral protein lattice forms in association with the surface anionic groups and diminishes the thermotropic lateral translational motion of intramembrane particles in the membrane. These results reveal that the anionic groups of metabolically active integral proteins which are known to be exposed at the surface of the inner mitochondrial membrane migrate with intramembrane particles in the plane of the membrane under conditions which induce lipid-protein lateral separations. In addition, cross-bridging of the anionic groups through an artificial peripheral protein lattice appears to diminish such induced lipid protein lateral separations.  相似文献   

20.
Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号