首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. Eighteen molluscan species were examined for the presence of d-alanine and alanine racemase activity to probe the probable relation between them.
  • 2.2. Two bivalve species had high concentration of d-alanine and l-alanine (1:1) and showed high activities of alanine racemase. In these species, the occurrence of d-alanine could be explained by the action of alanine racemase.
  • 3.3. In other species, the levels of d-alanine and enzyme activity were low, and the occurrence of d-alanine did not correspond with the presence of alanine racemase activity.
  • 4.4. The mechanism of the occurrence of d-alanine in molluscan tissues seems to vary from species to species and seems not to be associated with the phylogenic situation or habitats of the respective species.
  相似文献   

2.
Factors affecting the level of alanine racemase in Escherichia coli   总被引:6,自引:5,他引:1  
Alanine racemase occupies a key position in the alanine branch of peptidoglycan biosynthesis. The level of this enzyme in Escherichia coli W is a function of the carbon source. For example, growth on l-alanine causes a 25-fold higher level of alanine racemase when compared with growth on glucose. When potential inducers of this enzyme are added to either a glucose or succinate medium, a low specificity is observed with those compounds that cause higher levels of enzyme. Growth of E. coli W on either pyruvate, d-alanine, or l-alanine resulted in lower levels of l- and d-alanine in the internal pool. With each of these carbon sources, the level of alanine racemase was markedly elevated when compared to glucose-grown cells; thus, with single carbon sources, the concentration of alanine in the pool is inversely related to the specific activity of alanine racemase. These observations support derepression as a possible mechanism that gives rise to higher levels of alanine racemase. Since multiple forms of the alanine racemase were not detected in extracts from E. coli W grown on various carbon sources, it would appear that this type of heterogeneity is not a consideration in interpreting the above results.  相似文献   

3.
Addition of casein hydrolysate to suspensions of washed, nonpigmented, nonproliferating Serratia marcescens incubating at 27 C induced biosynthesis of prodigiosin. Four amino acids of casein hydrolysate, dl-aspartic acid, l-glutamic acid, l-proline, and l-alanine caused formation of pigment when added individually. dl-Ornithine also was effective. Optimal concentrations for maximal pigmentation were 5 to 10 mg/ml; at these high concentrations, d-serine also induced biosynthesis of some prodigiosin. dl-Alanine and -ornithine were as effective as the l-iosomers, but l-glutamic acid and l-proline gave better responses than their racemic mixtures. Kinetics of prodigiosin biosynthesis after addition of dl-alanine (20 mg/ml) were similar to those of cells suspended in 0.2% casein hydrolysate. The other amino acids were less effective. Addition of 5 mg of dl-alanine or casein hydrolysate per ml to minimal medium increased by 30% the amount of prodigiosin formed by growing cells after incubation for 7 days at 27 C. Cultures grown for 7 days at 27 C in 0.2% casein hydrolsate formed more prodigiosin than did suspensions of nonproliferating cells containing individual amino acids or casein hydrolysate. However, more pigment was produced by cells suspended in l-alanine (5 mg/ml) or l-proline (10 mg/ml) than when suspended in 0.4% natural or synthetic casein hydrolysate. Filtrates from suspensions of nonproliferating cells forming pigment in l-proline induced more rapid formation of prodigiosin, but filtrates from suspensions in dl-alanine did not. The data supported the hypothesis that pyrrole groups of prodigiosin may be synthesized from 5-carbon amino acids such as proline, ornithine, aspartic, and glutamic acids, but the role of alanine is unknown.  相似文献   

4.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

5.
The specific activities of l-alanine:d-alanine racemase, d-alanine:d-alanine ligase, and the l-alanine, d-glutamic acid, meso-diaminopimelic acid, and d-alanyl-d-alanine adding enzymes were followed during growth of Escherichia coli. The specific activities were nearly independent of the growth phase. d-Alanine:d-alanine ligase was inhibited by d-alanyl-d-alanine, d-cycloserine, glycine, and glycyl-glycine. l-Alanine:d-alanine racemase was found to be sensitive to d-cycloserine, glycine, and glycyl-glycine. The l-alanine adding enzyme was inhibited by glycine and glycyl-glycine.  相似文献   

6.
Cell wall-membrane preparations of Escherichia coli, prepared by the ethylenediaminetetraacetic acid-lysozyme method, contain enzymes which catalyze the oxidation of d-alanine and, to a lesser extent, l-alanine into pyruvate and ammonia without the formation of hydrogen peroxide. The kinetic parameters were (i) pH optima of 8.3 to 8.4 for l- and d-alanine and (ii) a K(m) value of 6.6 +/- 0.2 mM for d-alanine. Several coenzymes were without effect when added to the reaction mixture. The participation of d-alanine oxidase in the oxidation of l-alanine was demonstrated. The evidence is based on (i) results of cellular fractionation; (ii) labeling experiments; (iii) inhibition studies with aminooxyacetate and cycloserine; (iv) denaturation experiments; and (v) demonstration of the presence of an active racemase.  相似文献   

7.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

8.
Chloromethyl ketone analogs of glycine, dl-leucine, dl-alanine, and d-alanine were prepared. The dl-leucine and dl-alanine analogs were potent reversible inhibitors of leucine aminopeptidase. The enzyme was not inhibited by the d-alanine analog.  相似文献   

9.
The accumulation of d-alanine and the accumulation of glycine in Escherichia coli are related and appear to be separate from the transport of l-alanine. The analysis of four d-cycloserine-resistant mutants provides additional support for this conclusion. The first-step mutant from E. coli K-12 that is resistant to d-cycloserine was characterized by the loss of the high-affinity line segment of the d-alanine-glycine transport system in the Lineweaver-Burk plot. This mutation, which is linked to the met(1) locus, also resulted in the loss of the ability to transport d-cycloserine. The second-step mutation that is located 0.5 min from the first-step mutation resulted in the loss of the low-affinity line segment for the d-alanine-glycine transport system. The transport of l-alanine was decreased only 20 to 30% in each of these mutants. A multistep mutant from E. coli W that is 80-fold resistant to d-cycloserine lost >90% of the transport activity for d-alanine and glycine, whereas 75% of the transport activity for l-alanine was retained. E. coli W could utilize either d- or l-alanine as a carbon source, whereas the multistep mutant could only utilize l-alanine. Thus, a functioning transport system for d-alanine and glycine is required for both d-cycloserine action and growth on d-alanine.  相似文献   

10.
Pyridoxineless mutants of Escherichia coli are lysed in a few hours when starved for pyridoxine in a glucose minimal medium containing glycine at 10 mM. The lysis is prevented equally well by l-alanine and by d-alanine when either is present at 0.1 mM. The lysis is potentiated by 0.5 mM l-methionine. The peculiar susceptibility of E. coli B to glycine-mediated lysis during starvation for pyridoxine suggests that the starvation reduces the availability of some normal antagonist of glycine, presumably alanine.  相似文献   

11.
The accumulation of d-alanine, l-alanine, glycine, and d-cycloserine in Escherichia coli was found to be mediated by at least two transport systems. The systems for d-alanine and glycine are related, and are separate from that involved in the accumulation of l-alanine. d-Cycloserine appears to be primarily transported by the d-alanine-glycine system. The accumulation of d-alanine, glycine, and d-cycloserine was characterized by two line segments in the Lineweaver-Burk analysis, whereas the accumulation of l-alanine was characterized by a single line segment. d-Cycloserine was an effective inhibitor of glycine and d-alanine accumulation, and l-cycloserine was an effective inhibitor of l-alanine transport. The systems were further differentiated by effects of azide, enhancement under various growth conditions, and additional inhibitor studies. Since the primary access of d-cycloserine in E. coli is via the d-alanine-glycine system, glycine might be expected to be a better antagonist of d-cycloserine inhibition than l-alanine. Glycine and d-alanine at 10(-5)m antagonized the effect of d-cycloserine in E. coli, whereas this concentration of l-alanine had no effect.  相似文献   

12.
Bacteriocin (hemolysin) of Streptococcus zymogenes   总被引:22,自引:4,他引:18       下载免费PDF全文
The sensitivity of Streptococcus faecalis (ATTC 8043) to S. zymogenes X-14 bacteriocin depends greatly on its physiological age. Sensitivity decreases from the mid-log phase on and is completely lost in the stationary phase. The sensitivity of erythrocytes to the hemolytic capacity of the bacteriocin showed considerable species variation. The order of increasing sensitivity was goose < sheep < dog < horse < human < rabbit. However, when red cell stromata were used as inhibitors of hemolysis in a standard system employing rabbit erythrocytes the order of increasing effectiveness was sheep < rabbit < human < horse < goose. When rabbit cells were used in varying concentrations with a constant hemolysin concentration, there was a lag of about 30 min, which for a given hemolysin preparation was constant for all red cell concentrations. Furthermore, the rate of hemolysis increased with increasing red cell concentration. If red cells are held constant and lysin varied, the time to reach half-maximal lysis varies directly with lysin but is not strictly proportional. Bacterial membranes were one to three orders of magnitude more effective than red cell stromata as inhibitors. The order of increasing effectiveness seems to be Escherichia coli < Bacillus megaterium < S. faecalis < Micrococcus lysodeikticus. In addition to membranes, a d-alanine containing glycerol teichoic acid, trypsin in high concentration, and deoxyribonuclease also inhibited hemolysis. Ribonuclease, d-alanine, l-alanine, dl-alanyl-dl-alanine, N-acetyl-d-alanine, N-acetyl-l-alanine did not inhibit hemolysis.  相似文献   

13.
From the reaction mechanism and crystal structure analysis, a bacterial alanine racemase is believed to work as a homodimer with a substrate, l-alanine or d-alanine. We analysed oligomerization states of seven alanine racemases, biosynthetic and catabolic, from Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, P. putida and P. fluorescens, with three different methods, gel filtration chromatography, native PAGE and analytical ultracentrifugation. All alanine racemases were proved to be in a dynamic equilibrium between monomeric and dimeric form with every methods used in this study. In both biosynthetic and catabolic alanine racemases, association constants for dimerization were high for the enzymes with high V(max) values. The enzymes with low V(max) values gave the low association constants. We proposed that alanine racemases are classified into two types; the enzymes with low and high-equilibrium association constants for dimerization.  相似文献   

14.
Optically pure d-amino acids are industrially manufactured by biotransformations of cheap starting materials produced by chemical synthesis or fermentation in combination with the development of enzyme catalysts suitable for the starting materials. dl-Alaninamide, an intermediate of the chemical synthesis of dl-alanine, was efficiently converted to d-alanine by stereoselective hydrolysis with a d-isomer specific amidohydrolase produced by Arthrobacter sp. NJ-26. The total utilization system of dl-alaninamide for the production of optically pure d- and l-alanine was constructed by stereospecific amidohydrolases. On the other hand, d-amino acids were also produced from corresponding l-isomers, which are efficiently manufactured by fermentation. d-Glutamic acid was produced from l-glutamic acid. l-Glutamate was converted to the dl-form by the recombinant glutamate racemase of Lactobacillus brevis ATCC8287. Then l-glutamate in a racemic mixture was selectively decarboxylated to γ-aminobutyrate by the l-glutamate decarboxylase of E. coli ATCC11246. As a result of successive enzymatic reactions, d-glutamate was efficiently produced from l-glutamate by a one-pot reaction. d-Proline was produced by the same strategy from l-proline using the recombinant proline racemase of Clostridium sticklandii ATCC12262. In this case, l-proline was degraded by Candida sp. PRD-234. The strategy from l-amino acids to d-amino acids could be applicable to the manufacture of many d-amino acids.  相似文献   

15.
Composition and properties of a group A streptococcal teichoic acid   总被引:14,自引:0,他引:14       下载免费PDF全文
Teichoic acid-like material extracted by cold trichloroacetic acid from lyophilized whole cells of streptococci from groups A,D,E,O, and T was shown to give a positive precipitin reaction with group antisera. Similar material from cells of groups B,C,F,G,H,K,L,M,N,P,Q,R, and S did not give a positive reaction with group antisera. The group A material also reacted with anti-E serum; however, the opposite did not occur. A similar result was also obtained on the group T material and anti-O serum. The group A teichoic acid was purified by Sephadex column chromatography, and was shown to be free of cell wall peptidoglycan and polysaccharide, and ribitol teichoic acid. It was composed of glycerol, phosphate, alanine, and glucosamine. Alkaline hydrolysis showed the presence of ester-linked alanine and glucosaminylglycerol. Phosphorus was released from ester linkage by alkaline phosphatase. N-acetylglucosamine produced a 72% inhibition of the precipitin test at a level of 10 mumoles, and d-alanine methyl ester was significantly stronger than the l-alanine ester. A single precipitin band was seen with group A serum. The data indicate that teichoic acid of group A streptococci is a polymer composed of glycerol phosphate and containing N-acetylglucosamine and alanine. Antisera to these streptococci contain antibodies specific for the alanine and the glucosamine linkages. The use of serum containing antibodies to alanine-polyglycerophosphate shows that the occurrence of this type of teichoic acid is widespread among the streptococci.  相似文献   

16.
Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154-156. 1962.-Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent.  相似文献   

17.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

18.
Mode of action of glycine on the biosynthesis of peptidoglycan   总被引:17,自引:6,他引:11       下载免费PDF全文
The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to a disrupture of the normal balance between peptidoglycan synthesis and controlled enzymatic hydrolysis during growth. Second, the modified glycine-containing precursors may be incorporated. Since these are poor substrates in the transpeptidation reaction, a high percentage of muropeptides remains uncross-linked. The second mechanism may be the more significant in most cases.  相似文献   

19.
Spores of the standard transformable Marburg strain of Bacillus subtilis can be initiated to germinate by l-alanine alone. We isolated mutants which required for this process, in addition to l-alanine, the combination of d-glucose + d-fructose + K(+) or NH(4) (+) ions. In place of fructose, autoclaved or caramelized glucose could be used. Even the standard type strain required the addition of these three agents when d-alanine was present or when the temperature was raised. These findings show that l-alanine normally performs two functions during initiation, one of which is absent in the mutants or is blocked by d-alanine or elevated temperature. One of our mutants was not absolutely dependent on the addition of external l-alanine, because it could be initiated at a reduced rate by the sole addition of glucose + K(+) or NH(4) (+). When K(+) or NH(4) (+) was replaced by Na(+), the initiation rate was greatly reduced. The divalent metal ions Mg(++), Mn(++), and Ca(++) could not satisfy the cation requirement.  相似文献   

20.
Gaffar, Abdul (Brigham Young University, Provo, Utah), David R. Terry, and Richard D. Sagers. Amino acid composition of walls from single and filamentous cells of Clostridium acidiurici. J. Bacteriol. 91:1618-1624. 1966.-The walls from single and filamentous cells of Clostridium acidiurici were shown to contain 11 amino acids: aspartic acid, serine, glutamic acid, proline, d-alanine, glycine, valine, methionine, valine, leucine, phenylalanine, and lysine. In the walls from cells grown at 37 C, d-alanine was the amino acid present in largest quantity, but in the walls from cells grown at 44 C there was a 50% reduction in the d-alanine content while the levels of the other amino acids were unchanged. Filamentous cells grown at 44 C, then brought to 37 C and transferred to fresh medium, fragmented into short cells within 30 min. Alanine racemase activity was the same in extracts from cells grown at both 37 and 44 C, suggesting that this enzyme was not the major controlling factor in the low content of d-alanine in filaments grown at 44 C. Spent medium from cultures grown at 44 C contained a significant amount of d-alanine, whereas there was no evidence of this amino acid in the spent medium from cultures grown at 37 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号