首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activation of protein kinase G (PKG) by cyclic guanosine 3,5-monophosphate (cGMP) has become of considerable interest as a novel molecular approach for the induction of apoptosis in cancer cells. The present study was designed to examine the effects of cGMP and PKG on cell growth and apoptosis in the human breast cancer cell lines, MCF-7 and MDA-MB-468. To achieve this, 1-benzyl-3-(5P-hydroxymethyl-2P-furyl) indazole (YC-1), a soluble guanylyl cyclase activator, and 8-bromo-cGMP (8-br-cGMP), a membrane-permeant and phosphodiesterase-resistant analogue of cGMP, were employed in MCF-7 and MDA-MB-468 cells. Then, the role of PKG in the induction of apoptosis was evaluated using KT5823 and Rp-8-pCPT-cGMP as specific inhibitors of PKG. The expression of PKG isoforms in these cell lines was also investigated. KT5823 and Rp-8-pCPT-cGMP significantly attenuated the loss of cell viability caused by YC-1 and 8-br-cGMP in these cells. This study provides direct evidence that the activation of PKG by cGMP induces growth inhibition and apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines.  相似文献   

2.
YC-1, a synthetic benzyl indazole derivative, is capable of stimulating endogenous vessel wall cyclic guanosine monophosphate (cGMP) production and attenuating the remodeling response to experimental arterial angioplasty. In an effort to investigate the mechanisms of this YC-1-mediated vasoprotection, we examined the influence of soluble YC-1 or YC-1 incorporated in a polyethylene glycol (PEG) hydrogel on cultured rat vascular smooth muscle cell (SMC) cGMP synthesis, SMC proliferation, and platelet function. Results demonstrate that soluble YC-1 stimulated SMC cGMP production in a dose-dependent fashion, while both soluble and hydrogel-released YC-1 inhibited vascular SMC proliferation in a dose-dependent fashion without effects on cell viability. Platelet aggregation and adherence to collagen were both significantly inhibited in a dose-dependent fashion by soluble and hydrogel-released YC-1. Arterial neointima formation following experimental balloon injury was significantly attenuated by perivascular hydrogel-released YC-1. These results suggest that YC-1 is a potent, physiologically active agent with major anti-proliferative and anti-platelet properties that may provide protection against vascular injury through cGMP-dependent mechanisms.  相似文献   

3.
Glutamate, one of the major neurotransmitters in the central nervous system, is released into the synaptic spaces and bound to the glutamate receptors which facilitate normal synaptic transmission, synaptic plasticity, and brain development. Past studies have shown that glutamate with high concentration is a potent neurotoxin capable of destroying neurons through many signal pathways. In this research, our main purpose was to determine whether the specific soluble guanylyl cyclase activator YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole) had effect on glutamate-induced apoptosis in cultured PC12 cells. The differentiated PC12 cells impaired by glutamate were used as the cell model of excitability, and were exposed to YC-1 or/and ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) with gradient concentrations for 24 h. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl) assay was used to detect the cellular viability. Radioimmunoassay (RIA) was used to detect the cGMP (cyclic guanosine monophosphate) concentrations in PC12 cells. Hoechst 33258 staining and flow cytometric analysis were used to detect the cell apoptosis. The cellular viability was decreased and the apoptotic rate was increased when PC12 cells were treated with glutamate. Cells treated with YC-1 or/and ODQ showed no significant differences in the cell viability and intracellular cGMP levels compared with those of control group. The specific soluble guanylyl cyclase (sGC) inhibitor ODQ showed an inhibitory effect on cGMP level and aggravated the apoptosis of PC12 cells induced by glutamate. YC-1 elevated cGMP level thus decreased PC12 cell apoptosis induced by glutamate, but this effect could be reversed by ODQ. These results revealed that YC-1 might attenuate glutamate-induced PC12 cell apoptosis via a sGC–cGMP involved pathway.  相似文献   

4.
Chung JG  Yang JS  Huang LJ  Lee FY  Teng CM  Tsai SC  Lin KL  Wang SF  Kuo SC 《Proteomics》2007,7(18):3305-3317
To evaluate the effects of YC-1 on leukemia cell lines, PI incorporation was used to determine cell viability. YC-1 induced a dose- and time-dependent decrease in viability and apoptosis in YC-1-treated U937 cells. YC-1-induced apoptosis is a cyclic guanosine monophosphate (cGMP)-independent pathway. Proteomic analysis showed that the altered proteins include the significant regulation of HSP70, chaperonin, ATP synthase beta chains, and Chain F. Western blotting and immuno-cytochemistry stain showed that YC-1 treatment caused a time-dependent increase in cytosolic Cytochrome c, pro-caspase-9, Apaf-1, and the activation of caspase-9 and -3. Importantly, the in vivo antileukemia effects of YC-1 were evaluated in BALB/c mice inoculated with WEHI-3B orthotopic model. YC-1 enhanced survival rate and prevented the body weight loss in leukemia mice. The enlargement of spleen and lymph nodes were reduced in YC-1 treated than that in leukemia mice. H-E stain of spleen sections revealed that infiltration of immature myeloblastic cells into red pulp was reduced in YC-1-treated group. The apoptotic cells of splenocyte were significantly increased in YC-1 treated than that in leukemia mice by Tdt-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. Taken together, we conclude that YC-1 acted against U937 cells in vitro via a mitochondrial-dependent apoptosis pathway, and in orthotopic leukemia model, YC-1 administered antileukemia activity.  相似文献   

5.
Vasodilators capable of elevating cAMP or cGMP inhibit the activation of human platelets and stimulate the phosphorylation of a 46-kDa protein (vasodilator-stimulated phosphoprotein, VASP) mediated by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). The availability of purified proteins and specific antisera against VASP, PKG and the catalytic subunit of PKA enabled us to measure and estimate the concentration of these regulatory proteins in intact human platelets. In addition, the rate of PKA- and PKG-mediated VASP phosphorylation in intact human platelets was estimated. For these calculations, a homogeneous population of human platelets and a homogeneous intracellular distribution of proteins and second messengers was assumed. Unstimulated washed human platelets contain 4.4 microM cAMP and 3.1 microM catalytic subunit of PKA, which is equivalent to 6.2 microM cAMP-binding sites due to PKA. Unstimulated washed human platelets also contain 0.4 microM cGMP and 7.3 microM PKG monomer, equivalent to 14.6 microM cGMP-binding sites due to the PKG. The intracellular concentration of VASP in platelets was estimated to be 25 microM. Treatment of washed human platelets with 10 microM (or 10 mM) prostaglandin E1 (PGE1) elevated the intracellular cAMP concentration to 27 microM (10 microM with 10 nM PGE1) within 30 s, accompanied by a rapid, up to 55% (35%), conversion of VASP from the dephosphorylated form (46-kDa protein) to the phosphorylated form (50-kDa protein). Treatment of washed human platelets with 100 microM (or 1 microM) sodium nitroprusside elevated the platelet cGMP level to 4 microM (0.9 microM with 1 microM sodium nitroprusside) within 2 min, accompanied by a less-rapid VASP phosphorylation of 45% (27% with 1 microM sodium nitroprusside). PGE1 and sodium nitroprusside had no significant effect on human platelet cGMP or cAMP levels, respectively. The results suggest for human platelets that relatively small increase in cAMP levels are required for activation of most of PKA, whereas even several-fold increases in platelet cGMP levels are capable of stimulating only a small fraction of total PKG. This interpretation was also supported by phosphorylation experiments with purified VASP, PKG and catalytic subunit of PKA. The results also support the hypothesis that in human platelets both cAMP/PKA- and cGMP/PKG-regulated VASP phosphorylation are components of an efficient and sensitive signal-transduction pathway, most likely involved in the inhibition of platelet activation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP+-induced cytosolic phospholipase A2 (cPLA2) activation of dopaminergic neurons. MPP+ activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca2+]i level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA2, and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF3), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA2 on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA2 phosphorylation at Ser505. Inhibitors of cPLA2 and PKG increased viability and reduced MPP+-induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA2 phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA2.  相似文献   

7.
In a variety of systemic blood vessels, protein kinase G (PKG) plays a critical role in mediating relaxation induced by agents that elevate cGMP, such as nitric oxide. The role of PKG in nitric oxide- and cGMP-induced relaxation is less certain in the pulmonary circulation. In the present study, we examined the effects of inhibitors of PKG on the responses of isolated fourth-generation pulmonary veins of newborn lambs (10 +/- 1 days of age) to nitric oxide and cGMP. In vessels preconstricted with endothelin-1, nitric oxide and 8-bromo-cGMP (a cell-membrane-permeable cGMP analog) induced concentration-dependent relaxation. The relaxation was significantly attenuated by beta-phenyl-1, N(2)-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (Rp-8-Br-PET-cGMPS; a PKG inhibitor) and N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide [H-8; an inhibitor of PKG and protein kinase A (PKA)] but was not affected by KT-5720 (a PKA inhibitor). Biochemical study showed that PKG activity in newborn ovine pulmonary veins was inhibited by 8-Br-PET-cGMPS and H-8 but not by KT-5720. PKA activity was not affected by 8-Br-PET-cGMPS but was inhibited by H-8 and KT-5720. These results suggest that PKG is involved in relaxation of pulmonary veins of newborn lambs induced by nitric oxide and cGMP.  相似文献   

8.
Brown JE  Onyango DJ  Dunmore SJ 《FEBS letters》2007,581(17):3273-3276
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.  相似文献   

9.
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.  相似文献   

10.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs.  相似文献   

11.
Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser(136) and Ser(155); these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD.  相似文献   

12.
13.
In rat hepatocytes, atrial natriuretic peptide (ANP) elevates cGMP through activation of particulate guanylyl cyclase and attenuates Ca2+ signals by stimulating net plasma membrane Ca2+ efflux. We show here that ANP-stimulated hepatocyte Ca2+ efflux is mediated by protein kinase G (PKG) isotype I. Furthermore, we show that ANP recruits endogenous PKGIα, but not PKGIβ, to the plasma membrane. These effects are mimicked by 8-bromo-cGMP, but not by the soluble guanylyl cyclase activators, sodium nitroprusside and YC-1. We propose that ANP, through localized cGMP elevation, promotes plasma membrane recruitment of PKGIα, which, in turn, stimulates Ca2+ efflux.  相似文献   

14.
Fiscus RR 《Neuro-Signals》2002,11(4):175-190
Our current understanding of nitric oxide (NO), cyclic GMP (cGMP) and protein kinase G (PKG) signaling pathways in the nervous systems has its origins in the early studies conducted on vascular tissues during the late 1970s and early to mid-1980s. The pioneering research into the NO/cGMP/PKG pathway in blood vessels conducted by the laboratories of Drs. Ferid Murad, Louis Ignarro and Robert Furchgott ultimately led to the awarding of the 1998 Nobel Prize in Physiology or Medicine to these three scientists. On the basis of further pioneering studies by Drs. John Garthwaite, Solomon Snyder, Steven Vincent and many other neuroscientists during the late 1980s and throughout the 1990s, it became recognized that NO serves as a neurotransmitter/neuromodulator in the central and peripheral nervous systems and that certain neural cells possess a cGMP signaling pathway similar to that in vascular smooth muscle cells. Although NO (at high concentrations) is toxic and thought to participate in neuronal cell death during stroke and neurodegenerative diseases (e.g. amyotrophic lateral sclerosis, Alzheimer's disease, HIV dementia and Parkinson's disease), recent evidence suggests that NO at low physiological concentrations can act as an antiapoptotic/prosurvival factor in certain neural cells (e.g. PC12 cells, motor neurons and neurons of dorsal root ganglia, hippocampus and sympathetic nerves). The antiapoptotic effects of NO are mediated, in part, by cGMP and a downstream target protein, PKG. Other cGMP-elevating factors (e.g. atrial and brain natriuretic peptides) and direct PKG activator (e.g. 8-bromo-cGMP) also have antiapoptotic effects which have been quantified by the new capillary electrophoresis with laser-induced fluorescence detector technology. Inhibition of soluble guanylyl cyclase and lowering of basal cGMP levels cause apoptosis in unstressed neural cells (NG108-15 and N1E-115 cells). The cGMP/PKG pathway appears to play an essential role in preventing activation of a proapoptotic pathway, thus promoting neural cell survival.  相似文献   

15.
A major limitation of the use of organic nitrates in cardiovascular medicine is the development of tolerance, which has been attributed, in part, to a decrease in their metabolic activation in the vascular smooth muscle cell. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was shown to potentiate vascular smooth muscle responsiveness to glyceryl trinitrate (GTN), sodium nitroprusside, and the nitric oxide donor NOC 18, in organic nitrate-naive vascular smooth muscle. We used GTN-tolerant rabbit aortic rings (RARs) to test the hypothesis that a non-vasorelaxant concentration of YC-1 enhances the ability of the prototypical organic nitrate GTN to relax vascular smooth muscle and elevate intravascular cGMP under conditions of GTN tolerance. Treatment with YC-1 (3 microM) produced a left shift of the GTN concentration-response curve and decreased the EC50 value for GTN-induced relaxation in both GTN-tolerant and non-tolerant RARs (P < 0.05). Intravascular cGMP elevation induced by GTN was enhanced in the presence of YC-1 in GTN-tolerant and non-tolerant RARs (P < 0.05). These observations indicate that YC-1, or similarly acting drugs, may be useful in overcoming the tolerance that develops during sustained GTN therapy, and that its mechanism may involve enhanced cGMP formation.  相似文献   

16.
Signaling through cGMP has emerged as an important regulator of tissue homeostasis in the gastrointestinal tract, but the mechanism is not known. Type 2 cGMP-dependent protein kinase (PKG2) is a major cGMP effector in the gut epithelium, and the present studies have tested its importance in the regulation of proliferation and differentiation in the mouse colon and in colon cancer cell lines. Tissue homeostasis was examined in the proximal colon of Prkg2(-/-) mice using histological markers of proliferation and differentiation. The effect of ectopic PKG2 on proliferation and differentiation was tested in vitro using inducible colon cancer cell lines. PCR and luciferase reporter assays were used to determine the importance of Sox9 downstream of PKG2. The colons of Prkg2(-/-) mice exhibited crypt hyperplasia, increased epithelial apoptosis, and reduced numbers of differentiated goblet and enteroendocrine cells. Ectopic PKG2 was able to inhibit proliferation and induce Muc2 and CDX2 expression in colon cancer cells, but did not significantly affect cell death. PKG2 reduced Sox9 levels and signaling, suggesting possible involvement of this pathway downstream of cGMP in the colon. The work presented here demonstrates a novel antiproliferative and prodifferentiation role for PKG2 in the colon. These homeostatic functions of PKG2 were reproducible in colon cancer cells lines where downregulation of Sox9 is a possible mechanism. The similarities in phenotype between PKG2 and GCC knockout mice positions PKG2 as a likely mediator of the homeostatic effects of cGMP signaling in the colon.  相似文献   

17.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  相似文献   

18.
Intracellular production of nitric oxide (NO) is thought to mediate the pancreatic B-cell-directed cytotoxicity of cytokines in insulin-dependent diabetes mellitus, and recent evidence has indicated that this may involve induction of apoptosis. A primary effect of NO is to activate soluble guanylyl cyclase leading to increased cGMP levels and this effect has been demonstrated in pancreatic B-cells, although no intracellular function has been defined for islet cGMP. Here we demonstrate that the NO donor, GSNO, induces apoptosis in the pancreatic B-cell line HIT-T15 in a dose- and time-dependent manner. This response was significantly attenuated by micromolar concentrations of a specific inhibitor of soluble guanylyl cyclase, ODQ, and both 8-bromo cGMP (100 μM) and dibutyryl cGMP (300 μM) were able to fully relieve this inhibition. In addition, incubation of HIT-T15 cells with each cGMP analogue directly promoted cell death in the absence of ODQ. KT5823, a potent and highly selective inhibitor of cGMP-dependent protein kinase (PKG), abolished the induction of cell death in HIT cells in response to either GSNO or cGMP analogues. This effect was dose-dependent over the concentration range of 10–250 nM. Overall, these data provide evidence that the activation of apoptosis in HIT-T15 cells by NO donors is secondary to a rise in cGMP and suggest that the pathway controlling cell death involves activation of PKG.  相似文献   

19.
Reperfusion of cultured astrocytes with normal medium after exposure to H(2)O(2)-containing medium causes apoptosis. We have recently shown that ibudilast, which has been used for bronchial asthma and cerebrovascular disorders, attenuated the H(2)O(2)-induced apoptosis of astrocytes via the cGMP signaling pathway. This study examines the mechanism underlying the protective effect of cGMP. The membrane-permeable cGMP analog dibutyryl-cGMP attenuated the H(2)O(2)-induced decrease in cell viability, DNA ladder formation, nuclear condensation, reduction of the mitochondrial membrane potential, cytochrome c release from mitochondria, and caspase-3 activation in cultured astrocytes. These effects of dibutyryl-cGMP were almost completely inhibited by the cGMP-dependent protein kinase (PKG) inhibitor KT5823. In isolated rat brain mitochondria, cGMP in the presence of cytosolic extract from astrocytes inhibited the mitochondrial permeability transition pore (PTP) as determined by monitoring Ca(2+)-induced mitochondrial swelling. This ability of the cytosolic extract was inactivated by heat treatment and was mimicked by exogenous PKG. The effect of cGMP on the mitochondrial swelling was blocked by KT5823. The PTP inhibitors cyclosporin A and bongkrekic acid prevented the H(2)O(2)-induced decrease in cell viability and caspase-3 activation. These findings demonstrate that cGMP inhibits the mitochondrial PTP via the activation of PKG, and the prevention of mitochondrial dysfunction contributes to its anti-apoptotic effect.  相似文献   

20.
Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricted with endothelin-1, to increasing concentrations of 8-bromo-cGMP (8-BrcGMP) or 8-BrcAMP (cell-permeable analogs), in the presence or absence of Rp-8-beta-phenyl-1,N(2)-etheno-bromoguanosine cyclic monosphordthioate (Rp-8-PET-BrcGMPS) or KT-5720, selective inhibitors of PKG and PKA, respectively. When examined for specificity, Rp-8-Br-PET-cGMPS abolished PKG, but not PKA, activity in pulmonary arterial extracts, whereas KT-5720 inhibited PKA activity only. 8-BrcGMP-induced relaxation was inhibited by the PKG inhibitor only, whereas 8-BrcAMP-induced relaxation was inhibited by both inhibitors. A nearly fourfold higher concentration of cAMP than cGMP was required to relax arteries by 50% and to activate PKG by 50%. Our results demonstrate that relaxation of pulmonary arteries is more sensitive to cGMP than cAMP and that PKG plays an important role in both cGMP- and cAMP-mediated relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号