首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human cytomegalovirus UL18, a MHC class I homologue, is known to serve as a natural killer cell (NK) decoy and to ligate NK inhibitory receptors to prevent lysis of an infected target cell. To explore whether the cell surface expression of UL18 represents a potential immune suppressive approach to evade NK-mediated cytotoxicity in the prevention of xenograft rejection, we examined the effect of the UL18 expression in vitro upon human NK-mediated cytotoxicity against swine endothelial cells (SECs). UL18 expression on SECs by a retroviral vector (PLNCX2) significantly suppressed NK-mediated SEC lysis by approximately 25-100%. The protective effect of UL18 could be mediated through ILT-2 inhibitory receptor on NKs. Additionally, the interaction between UL18 and NKs resulted in the significant reduction of IFN-gamma production. This study demonstrates that UL18 can serve as an effective tool for the evasion of NK-mediated cytotoxicity and for the inhibition of IFN-gamma production during xenograft rejection.  相似文献   

2.
Wang D  Shenk T 《Journal of virology》2005,79(16):10330-10338
Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion.  相似文献   

3.
The UL131A protein is part of a pentameric variant of the gcIII complex in the virion envelope of human cytomegalovirus (HCMV), which has been found essential for efficient entry into endothelial cells (ECs). Using a systematic mutational scanning approach, we aimed to define peptide motifs within the UL131A protein that contribute to EC infection. Mutant viruses were generated in which charged amino acids within frames of 2 to 6 amino acids were replaced with alanines. The resulting viruses were evaluated with regard to their potential to infect EC cultures. Four clusters of charged amino acids essential for EC infection were identified (amino acids 22 to 27, 32 to 35, 64 to 69, and 116 to 121). Mutations of individual charge clusters within amino acids 72 to 104 caused minor reductions of EC tropism, but these effects were additive in a combined mutation, showing that this region also contributes to EC tropism. Only charge clusters within amino acids 46 to 58 were found irrelevant for EC infection. In conclusion, the unusual sensitivity to mutations, together with the remarkable conservation of the UL131A protein, emphasizes its particular role for EC tropism of HCMV.  相似文献   

4.
The entry of human cytomegalovirus (HCMV) into biologically relevant epithelial and endothelial cells involves endocytosis followed by low-pH-dependent fusion. This entry pathway is facilitated by the HCMV UL128, UL130, and UL131 proteins, which form one or more complexes with the virion envelope glycoprotein gH/gL. gH/gL/UL128-131 complexes appear to be distinct from the gH/gL/gO complex, which likely facilitates entry into fibroblasts. In order to better understand the assembly and protein-protein interactions of gH/gL/UL128-131 complexes, we generated HCMV mutants lacking UL128-131 proteins and nonreplicating adenovirus vectors expressing gH, gL, UL128, UL130, and UL131. Our results demonstrate that UL128, UL130, and UL131 can each independently assemble onto gH/gL scaffolds. However, the binding of individual UL128-131 proteins onto gH/gL can significantly affect the binding of other proteins; for example, UL128 increased the binding of both UL130 and UL131 to gH/gL. Direct interactions between gH/UL130, UL130/UL131, gL/UL128, and UL128/UL130 were also observed. The export of gH/gL complexes from the endoplasmic reticulum (ER) to the Golgi apparatus and cell surface was dramatically increased when all of UL128, UL130, and UL131 were coexpressed with gH/gL (with or without gO expression). Incorporation of gH/gL complexes into the virion envelope requires transport beyond the ER. Thus, we concluded that UL128, UL130, and UL131 must all bind simultaneously onto gH/gL for the production of complexes that can function in entry into epithelial and endothelial cells.  相似文献   

5.
Cyclooxygenase-2 (COX-2) is a cellular enzyme in the eicosanoid synthetic pathway that mediates the synthesis of prostaglandins from arachidonic acid. The eicosanoids function as critical regulators of a number of cellular processes, including the acute and chronic inflammatory response, hemostasis, and the innate immune response. Human cytomegalovirus (HCMV), which does not encode a viral COX-2 isoform, has been shown to induce cellular COX-2 expression. Importantly, although the precise role of COX-2 in CMV replication is unknown, COX-2 induction was shown to be critical for normal HCMV replication. In an earlier study, we identified an open reading frame (Rh10) within the rhesus cytomegalovirus (RhCMV) genome that encoded a putative protein (designated vCOX-2) with high homology to cellular COX-2. In the current study, we show that vCOX-2 is expressed with early-gene kinetics during RhCMV infection, resulting in production of a 70-kDa protein. Consistent with the expression of a viral COX-2 isoform, cellular COX-2 expression was not induced during RhCMV infection. Finally, analysis of growth of recombinant RhCMV with vCOX-2 deleted identified vCOX-2 as a critical determinant for replication in endothelial cells.  相似文献   

6.
Human cytomegalovirus (HCMV) replication in epithelial and endothelial cells appears to be important in virus spread, disease, and persistence. It has been difficult to study infection of these cell types because HCMV laboratory strains (e.g., AD169 and Towne) have lost their ability to infect cultured epithelial and endothelial cells during extensive propagation in fibroblasts. Clinical strains of HCMV (e.g., TR and FIX) possess a cluster of genes (UL128 to UL150) that are largely mutated in laboratory strains, and recent studies have indicated that these genes facilitate replication in epithelial and endothelial cells. The mechanisms by which these genes promote infection of these two cell types are unclear. We derived an HCMV UL128-to-UL150 deletion mutant from strain TR, TRdelta4, and studied early events in HCMV infection of epithelial and endothelial cells, and the role of genes UL128 to UL150. Analysis of wild-type TR indicated that HCMV enters epithelial and endothelial cells by endocytosis followed by low-pH-dependent fusion, which is different from the pH-independent fusion with the plasma membrane observed with human fibroblasts. TRdelta4 displayed a number of defects in early infection processes. Adsorption and entry of TRdelta4 on epithelial cells were poor compared with those of TR, but these defects could be overcome with higher doses of virus and the use of polyethylene glycol (PEG) to promote fusion between virion and cellular membranes. High multiplicity and PEG treatment did not promote infection of endothelial cells by TRdelta4, yet virus particles were internalized. Together, these data indicate that genes UL128 to UL150 are required for HCMV adsorption and penetration of epithelial cells and to promote some early stage of virus replication, subsequent to virus entry, in endothelial cells.  相似文献   

7.
Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects and morbidity in immunocompromised patients and a potential trigger for vascular disease. HCMV replicates in vascular endothelial cells and drives leukocyte-mediated viral dissemination through close endothelium- leukocyte interaction. However, the genetic basis of HCMV growth in endothelial cells and transfer to leukocytes is unknown. We show here that the UL131-128 gene locus of HCMV is indispensable for both productive infection of endothelial cells and transmission to leukocytes. The experimental evidence for this is based on both the loss-of-function phenotype in knockout mutants and natural variants and the gain-of-function phenotype by trans-complementation with individual UL131, UL130, and UL128 genes. Our findings suggest that a common mechanism of virus transfer may be involved in both endothelial cell tropism and leukocyte transfer and shed light on a crucial step in the pathogenesis of HCMV infection.  相似文献   

8.
Human cytomegalovirus (HCMV) growth in endothelial cells (EC) requires the expression of the UL131A-128 locus proteins. In this study, the UL130 protein (pUL130), the product of the largest gene of the locus, is shown to be a luminal glycoprotein that is inefficiently secreted from infected cells but is incorporated into the virion envelope as a Golgi-matured form. To investigate the mechanism of the UL130-mediated promotion of viral growth in EC, we performed a complementation analysis of a UL130 mutant strain. To provide UL130 in trans to viral infections, we constructed human embryonic lung fibroblast (HELF) and human umbilical vein endothelial cell (HUVEC) derivative cell lines that express UL130 via a retroviral vector. When the UL130-negative virus was grown in UL130-complementing HELF, the infectivity of progeny virions for HUVEC was restored to the wild-type level. In contrast, the infectivity of the UL130-negative virus for UL130-complementing HUVEC was low and similar to that of the same virus infecting control noncomplementing HUVEC. The UL130-negative virus, regardless of whether or not it had been complemented in the prior cycle, could form plaques only on UL130-complementing HUVEC, not control HUVEC. Because (i) both wild-type and UL130-transcomplemented virions maintained their infectivity for HUVEC after purification, (ii) UL130 failed to complement in trans the UL130-negative virus when it was synthesized in a cell separate from the one that produced the virions, and (iii) pUL130 is a virion protein, models are favored in which pUL130 acquisition in the producer cell renders HCMV virions competent for a subsequent infection of EC.  相似文献   

9.
Characterization of the human cytomegalovirus UL34 gene   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

10.
11.
The human cytomegalovirus UL97 protein is an unusual protein kinase that is able to autophosphorylate and to phosphorylate certain exogenous substrates, including nucleoside analogs such as ganciclovir. However, no natural substrate of UL97 in infected cells has been identified. We report here that recombinant UL44 protein became radiolabeled when incubated with recombinant UL97 and [(32)P]ATP and that both proteins could be coimmunoprecipitated by an antibody that recognizes either protein. Subsequent studies showed that highly purified, recombinant UL97 phosphorylated purified, recombinant UL44. This phosphorylation occurred on serine and threonine residues and was sensitive to inhibition by maribavir and to a mutation that inactivates UL97 catalytic activity. Two-dimensional gel electrophoresis revealed the absence of specific phosphorylated forms of UL44 in immunoprecipitates from lysates of cells infected with a UL97 null mutant virus or with wild-type virus in the presence of maribavir. The results indicate that UL97 is sufficient to phosphorylate UL44 in vitro and is necessary for the normal phosphorylation of UL44 in infected cells. This strongly suggests that UL44 is a natural substrate of UL97.  相似文献   

12.
13.
Systemic sclerosis is an autoimmune disease characterized by immunological and vascular abnormalities. Autoantibodies against intracellular antigens are associated with particular clinical features of the disease, whereas autoantibodies against cell surface antigens may be pathogenic by inducing endothelial cell damage, considered the primary event in the pathogenesis of the disease. Latent human cytomegalovirus infection may contribute to progression of systemic sclerosis through its ability to infect endothelial cells; however, direct links between human cytomegalovirus infection and systemic sclerosis are still lacking. Molecular mimicry is one of the mechanisms that account for the link between infection and autoimmunity. Here we have identified an immunodominant peptide using systemic sclerosis serum screening of a random peptide library; such peptide shares homology with autoantigens and with the human cytomegalovirus late protein UL94 (ref. 9). Immunoglobulin G antibodies against the peptide affinity-purified from the sera of patients with systemic sclerosis specifically recognized the viral product and autoantigens; moreover, such antibodies induced endothelial cell apoptosis through specific interaction with the cell surface integrin-NAG-2 protein complex. Our results provide evidence that antibodies against human cytomegalovirus cause apoptosis of endothelial cells, considered the initial pathogenic event of systemic sclerosis, and indicate a previously unknown mechanism for the etiological link between human cytomegalovirus infection and autoimmunity.  相似文献   

14.
Drug‐resistant cytomegalovirus appears during prolonged anti‐cytomegalovirus therapy. Assays for human cytomegalovirus viral protein kinase (UL97) and viral DNA polymerase (UL54) gene mutations conferring drug resistance have been used rather than susceptibility assays to assess clinical specimens. In this study a sensitive system for genotype assay of UL97 and UL54 in clinical specimens with as few as six copies/µg of DNA was developed.  相似文献   

15.
16.
17.
Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.  相似文献   

18.
19.
Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.  相似文献   

20.
An endothelial cell-tropic and leukotropic human cytomegalovirus (HCMV) clinical isolate was cloned as a fusion-inducing factor X-bacterial artificial chromosome in Escherichia coli, and the ribonucleotide reductase homolog UL45 was deleted. Reconstituted virus RVFIX and RV Delta UL45 grew equally well in human fibroblasts and human endothelial cells. Thus, UL45 is dispensable for growth of HCMV in both cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号