首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endothelin-1 (ET-1) is a 21 amino acids peptide that exerts several biological activities through interaction with specific G-protein coupled receptors. Increased ET-1 expression is frequently associated with pathological situations involving alterations in glutamate levels. In the present study, a brief exposure to ET-1 was found to increase aspartate uptake in C6 glioma cells, which endogenously express the neuronal glutamate transporter EAAC1 (pEC50 of 9.89). The stimulatory effect of ET-1 mediated by ETA receptors corresponds to a 62% increase in the Vmax with no modification of the affinity for the substrate. While protein kinase C activity is known to participate in the regulation of EAAC1, the effect of ET-1 on the glutamate uptake was found to be independent of this kinase activation. In contrast, the inactivation of Go/i type G-protein dependent signaling with pertussis toxin was found to impair ET-1-mediated regulation of EAAC1. An examination of the cell surface expression of EAAC1 by protein biotinylation studies or by confocal analysis of immuno-fluorescence staining demonstrated that ET-1 stimulates EAAC1 translocation to the cell surface. Hence, the disruption of the cytoskeleton with cytochalasin D prevented ET-1-stimulated aspartate uptake. Together, the data presented in the current study suggest that ET-1 participates in the acute regulation of glutamate transport in glioma cells. Considering the documented role of glutamate excitotoxicity in the development of brain tumors, endothelinergic system constitutes a putative target for the pharmacological control of glutamate transmission at the vicinity of glioma cells.  相似文献   

2.
The adenosine A1 receptor selective agonist, N 6-cyclopentyladenosine (CPA, 300 nM) inhibited basal accumulation of [3H]inositol phosphates ([3H]InsPs), but not the total levels of membrane [3H]-phosphoinositides, in rat hippocampal slices. This action of CPA was not significantly modified when synaptic transmission was blocked with tetrodotoxin (TTX, 200 nM) but was prevented in slices pre-incubated with pertussis toxin (PTX, 5 g/mL) for 12-16 hr. Neither PTX nor TTX, when applied in the absence of CPA, influenced basal [3H]InsPs accumulation. It is concluded that the inhibition of the basal phosphatidylinositol metabolism by adenosine A1 receptor activation is independent of neurotransmission and involves a PTX-sensitive G protein, probably of the Gi/Go family.  相似文献   

3.
4.
Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 μM) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV (1–10 μM) enhanced capsaicin-evoked substance P release about 100%. This facilitatory effect was blocked by 0.3 μM MK-801, a selective NMDA receptor antagonist. The metabotropic glutamate receptor agonists L-AP4 (group III) and DHPG (group I) (30–100 μM) inhibited capsaicin-evoked substance P release by approximately 60%. These inhibitory effects were blocked by the selective metabotropic glutamate receptor antagonist (±)-MCPG (5 μM). On the other hand, AMPA and kainate (0.1–10 μM), did not significantly affect capsaicin-evoked substance P release. Thus, substance P release from non-myelinated primary afferents, and possibly nociception, may be under the functional antagonistic control of some metabotropic and ionotropic glutamate receptor subtypes.  相似文献   

5.
目的和方法:探讨脑水肿发病的细胞机制,采用[^3H]OMG摄取的方法测定细胞含水量,观察DynA对谷氨酸诱导的大鼠C6胶质瘤细胞肿胀的影响。结果:①给予0.5,1.0,10.0mmol/L的谷氨酸作用1h均可引起细胞的含水量增加;②DynA可显著降低谷氨酸诱导肿胀的大鼠C6胶质瘤细胞含水量;③κ阿片受体拮抗剂nor-BNI可阻断DynA1-13降低谷氨酸诱导肿胀的大鼠C6胶质瘤细胞含水量的作用。结论:谷氨酸可诱导大鼠C6胶瘤细胞肿胀;DynA1-13可能过激活κ阿片受体抑制谷氨酸诱导的大鼠C6胶质瘤细胞肿胀。  相似文献   

6.
Intracellular distribution of endothelin-1 receptors in rat liver cells.   总被引:2,自引:0,他引:2  
We studied the binding of (125I)-endothelin-1 as well as that of the vasopressin analogue (125I)-[8-phenylpropionyl]-LVP to purified plasma membranes, Golgi cisternae and cell nuclei from rat liver. Cell organelles were isolated by differential centrifugation and discontinuous sucrose gradients. Endothelin-1 exhibited specific binding to plasma membranes, Golgi cisternae and nuclei, while the binding of (125I)-[8-phenylpropionyl]-LVP was restricted to the plasma membranes. The number of receptors (Bmax) and the binding constants (Kd) were determined by Scatchard analysis of competition binding studies. In all cases only one class of Et-1 binding sites could be detected. The presence of Et-1 receptors on the Golgi complex either indicates that the receptor is glycosylated within the cisternae or alternatively, there exists a recycling pathway. The unexpected finding of Et-1 receptors on highly purified nuclei suggests that this peptide may exert part of its biological functions intracellularly via the nucleus.  相似文献   

7.
A magnetic twisting stimulator was developedbased on the previously published technique of magnetic twistingcytometry. Using ligand-coated ferromagnetic microbeads, thisdevice can apply mechanical stresses with varying amplitudes, duration,frequencies, and waveforms to specific cell surface receptors.Biochemical and biological responses of the cells to the mechanicalstimulation can be assayed. Twisting integrin receptors with RGD(Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1(ET-1) gene expression by >100%. In contrast, twisting scavengerreceptors with acetylated low-density lipoprotein-coated beads ortwisting HLA antigen with anti-HLA antibody-coated beads did not leadto alterations in ET-1 gene expression. In situ hybridization showedthat the increase in ET-1 mRNA was localized in the cells that werestressed with the RGD-coated beads. Blocking stretch-activated ionchannels with gadolinium, chelating Ca2+ with EGTA, orinhibiting tyrosine phosphorylation with genistein abolishedtwist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension withan inhibitor of the myosin ATPase, with an inhibitor of myosin lightchain kinase, or with an actin microfilament disrupter blockedtwisted-induced increases in ET-1 expression. Our results areconsistent with the hypothesis that the molecular structural linkage ofintegrin-cytoskeleton is an important pathway for stress-induced ET-1gene expression.

  相似文献   

8.
9.
Protein tyrosine phosphorylation, modulated by the rate of both protein tyrosine kinase and protein tyrosine phosphatase activities, is critical for cellular signal transduction cascades. We report that endothelin-1 stimulation of rabbit platelets resulted in a dose- and time-dependent tyrosine phosphorylation of four groups of proteins in the molecular mass ranges of 50, 60, 70–100 and 100–200 kDa and that one of these corresponds to focal adhesion kinase. This effect is also related to the approximately 60% decrease in protein tyrosine phosphatase activity. Moreover, this inhibited activity was less sensitive to orthovanadate. In the presence of forskolin that increases the cAMP level a dose-dependent inhibition of the endothelin-stimulated tyrosine phosphorylation of different protein substrates and a correlation with an increase in the protein tyrosine phosphatase activity (11.6-fold compared to control) have been found. Further studies by immunoblotting of immunoprecipitated soluble fraction with anti-protein tyrosine phosphatase-1C from endothelin-stimulated platelets have demonstrated that the tyrosine phosphorylation of platelet protein tyrosine phosphatase-1C is correlated with the decrease in its phosphatase activity. As a consequence, modulation and regulation by endothelin-1 in rabbit platelets can be proposed through a cAMP-dependent pathway and a tyrosine phosphorylation process that may affect some relevant proteins such as focal adhesion kinase.  相似文献   

10.
Multiple effects of pertussis toxin (PT) on Jurkat T-cells can be distinguished on the basis of their dose-response and their kinetics. High concentrations of PT deliver to cells an activating signal resulting in a rapid rise in [Ca2+]i followed by IL-2 synthesis. This activation is accompanied (within 2 h) by a down-regulation of the CD3/TCR complex from the cell surface. Cells then become refractory towards stimulation by CD3 mAb or PHA. All these effects, referred to as 'mitogenic effects', present the same dose-response curves with an EC50 of 0.5 micrograms/ml. Short term effects (PT-induced Ca2+ movements, down-regulation of CD3/TCR complex and inhibition of PHA and CD3-induced Ca2+ signal) are observed under conditions where no PT-induced ADP-ribosylation can be detected. In contrast, ADP-ribosylation of the 40,000 alpha-subunit of G-proteins requires a sustained (18 h) incubation of intact cells in the presence of low concentration (EC50 = 0.3 ng/ml) of PT. Dose-response curves for PT-dependent ADP-ribosylation and mitogenic effects are separated by three orders of magnitude. Covalent modification of G-protein has no effect on CD3-induced increase in [Ca2+]i and IL-2 synthesis induced by a combination of phorbol ester and either CD3 mAb, PHA or calcium ionophore. These data indicate that transduction of the mitogenic signal does not involve a PT-sensitive G-protein. Furthermore, inhibition of mitogenic signals following PT treatment results from a PT-induced activation leading to a down-regulation of the CD3/T cell receptor complex.  相似文献   

11.
12.
Glial glutamate transporter GLT-1 mRNA was selectively induced in C6 glioma cells exposed to hypertonic stress (HS), while the expression of two other subtypes, GLAST and EAAC1, was suppressed. HS increased phosphorylation of the MAPK family, ERK, p38 MAPK, and JNK. Treatment with a PKC inhibitor showed that phosphorylation of both p38 MAPK and JNK is PKC-dependent but ERK phosphorylation is independent. Inhibition of either ERK or p38 MAPK did not abolish GLT-1 mRNA induction. Inhibition of PKC also had no effect. These findings indicate that the induction of GLT-1 mRNA by HS is independent of the MAPK pathways. This is the first report that the expression of glial glutamate transporters is osmotically regulated.  相似文献   

13.
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder characterized by a progressive fibrosis which involves skin and internal organs, caused by microvascular damage. The earliest clinical sign of the disease is Raynauds Phenomenon, a vasospastic response to cold or stress stimuli, followed by the skin and organ involvement over time. This kind of vascular manifestation originates from the microvascular structural alteration, characterized by an abnormal myocyte cell proliferation, intima cell proliferation and adventitia fibrosis. The microvascular damage seems to be the consequence of the autoimmune attack to the endothelium, followed by inflammatory cascade and massive deposition of collagen. From the beginning of the disorder, serum Endothelin-1 (ET- 1) is found in very high concentration: this protein, today, is considered one of the most important mediators of scleroderma vascular alterations. Furthermore, many recent studies have shown that ET-1 is involved in the inflammatory and fibrotic processes, increasing the concentration of pro-fibrotic and pro-inflammatory cytokines. The aim of this review is to clarify the ET-1 role in SSc, in particular the relationship between ET-1 and cytokine expression, adding another element to the understanding of scleroderma disease.  相似文献   

14.
We found that sparse and confluent C6 glioma cells differ both in GM3 content, which increases with cell density, and in endothelin-1 (ET-1)-induced phosphoinositide hydrolysis, which was markedly higher in the sparse cells than in the confluent. Also after manipulation of the cellular GM3 content through treatment with exogenous GM3 or with drugs known to affect GM3 metabolism, the ET-1 effect was inversely related to GM3 cellular levels. Cell treatment with an anti-GM3 mAb resulted in the enhancement of ET-1-induced phospholipase C activation and restored the capacity of GM3-treated cells to respond to ET-1. These findings suggest that the GM3 ganglioside represents a physiological modulator of ET-1 signaling in glial cells.  相似文献   

15.
Glial cell proliferation in culture is under the control of metabotropic glutamate (mGlu) receptors. We have examined whether this control extends to human glioma cells. Primary cultures were prepared from surgically removed human glioblastomas. RT-PCR combined with western blot analysis showed that most of the cultures (eight out of 11) expressed group-II mGlu receptors. In two selected cultures (MZC-12 and FCN-9), the mGlu2/3 receptor antagonist, LY341495, slowed cell proliferation when applied to the growth medium from the second day after plating. This effect was reversible because linear cell growth was restored after washing out the drug. LY341495 reduced glioma cell proliferation at concentrations lower than 100 nm, which are considered as selective for mGlu2/3 receptors. In addition, its action was mimicked by the putative mGlu2/3 receptor antagonist (2S)-alpha-ethylglutamate. The anti-proliferative effect of LY341495 was confirmed by measuring [methyl-3H]-thymidine incorporation in cultures arrested in G0 phase of the cell cycle and then stimulated to proliferate by the addition of 10% fetal calf serum or 100 ng/mL of epidermal growth factor (EGF). In cultures treated with EGF, LY341495 was also able to reduce the stimulation of the mitogen-activated protein kinase (MAPK) pathway, as well as the induction of cyclin D1. Both effects, as well as decreased [methyl-3H]-thymidine incorporation, were partially reduced by co-addition of the potent mGlu2/3 receptor agonist, LY379268. We conclude that activation of group-II mGlu receptors supports the growth of human glioma cells in culture and that antagonists of these receptors should be tested for their ability to reduce tumour growth in vivo.  相似文献   

16.
We comparedthe Ca2+ channels activated by endothelin-1 (ET-1) inChinese hamster ovary (CHO) cells stably expressing endothelin type A(ETA) or endothelin type B (ETB) receptorsusing the Ca2+ channel blockers LOE-908 and SK&F-96365. Inboth CHO-ETA and CHO-ETB, ET-1 at 0.1 nMactivated the Ca2+-permeable nonselective cation channel-1(NSCC-1), which was sensitive to LOE-908 and resistant to SK&F-96365.ET-1 at 1 nM activated NSCC-2 in addition to NSCC-1; NSCC-2 wassensitive to both LOE-908 and SK&F-96365. ET-1 at 10 nM activated thesame channels as 1 nM ET-1 in both cell types, but inCHO-ETA, it additionally activated the store-operatedCa2+ channel (SOCC), which was resistant to LOE-908 andsensitive to SK&F-96365. Up to 1 nM ET-1, the level of the formation of inositol phosphates (IPs) was low and similar in both cell types, but,at 10 nM ET-1, it was far greater in CHO-ETA than inCHO-ETB. These results show that, in CHO-ETAand CHO-ETB, ET-1 up to 10 nM activated the sameCa2+ entry channels: 0.1 nM ET-1 activated NSCC-1, andET-1  1 nM activated NSCC-1 and NSCC-2. Notably, inCHO-ETA, 10 nM ET-1 activated SOCCs because of the higherformation of IPs.

  相似文献   

17.
Ionotropic glutamate receptors function can be affected by neurosteroids, both positively and negatively. N-methyl-D-aspartate (NMDA) receptor responses to exogenously applied glutamate are potentiated or inhibited (depending on the receptor subunit composition) by pregnenolone sulphate (PS) and inhibited by pregnanolone sulphate (3alpha5betaS). While PS effect is most pronounced when its application precedes that of glutamate, 3alpha5betaS only binds to receptors already activated. Synaptically activated NMDA receptors are inhibited by 3alpha5betaS, though to a lesser extent than those tonically activated by exogenous glutamate. PS, on the other hand, shows virtually no effect on any of the models of synaptically activated NMDA receptors. The site of neurosteroid action at the receptor molecule has not yet been identified, however, the experiments indicate that there are at least two distinct extracellularly located binding sites for PS mediating its potentiating and inhibitory effects respectively. Experiments with chimeric receptors revealed the importance of the extracellular loop connecting the third and the fourth transmembrane domain of the receptor NR2 subunit for the neurosteroid action. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors are inhibited by both PS and 3alpha5betaS. These neurosteroids also affect AMPA receptors-mediated synaptic transmission, however, in a rather indirect way, through presynaptically located targets of action.  相似文献   

18.
Glutamine transport across the cell membranes of a variety of mammalian tissues is mediated by at least four transport systems: a sodium-independent system L, and sodium-dependent systems A, ASC and N, the latter occurring in different tissue-specific variants. In this study we assessed the contribution of these systems to the uptake of [(3)H]glutamine in C6 rat glioma cells. The sodium-dependent uptake, which accounted for more than 80% of the total uptake, was not inhibited by 2-methylaminoisobutyric acid (MeAIB), indicating that system A was inactive, possibly being depressed by glutamine present in the culture medium. About 80% of the sodium-dependent uptake was mediated by system ASC, which differed from system ASC common to other CNS- and non-CNS tissues by its pH-dependence and partial lithium tolerance. The residual 20% of sodium-dependent uptake appeared to be mediated by system N, which was identified as a component resistant to inhibition by MeAIB+threonine. The system N in C6 cells appeared to be neither fully compatible with the neuronal system Nb, nor with the N system described in astrocytes: it differed from the former in being strongly inhibited by histidine and showing fair tolerance for lithium, and from the latter in its pH-insensitivity and strong inhibition by glutamate. The sodium-independent glutamine uptake differed from the astrocytic or neuronal uptake in its relatively weak inhibition by system L substrates and a strong inhibition by system ASC substrates, indicating a possible contribution of a variant of the ASC system.  相似文献   

19.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

20.
The present study has examined the effects of adenosine A1 receptors on second messenger processes in GH3 cells. A1 receptors are present which are shown to inhibit adenylate cyclase in a GTP-requiring manner. Hormone (VIP) stimulation is also absolutely required for the observation of inhibition. Adenosine A1 receptor analogues also inhibit TRH-stimulated [Ca2+]i-mobilization in GH3 cells. Both effects of the adenosine receptor agonists are apparently mediated by pertussis toxin substrates, of which there are two--41,000 and 40,000 daltons respectively--in these cells. Somatostatin exerts analogous effects to the adenosine agonists in GH3 cells. Thus it may turn out that a general property of 'cyclase inhibitory receptors' is also to inhibit [Ca2+]i-mobilization in the same cells, when such mechanisms are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号