首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FdUMP[N] molecules and conjugates are much more effective at inhibiting the proliferation of human tumor cells than is the widely used anticancer drug 5-fluorouracil (5FU). We have evaluated the inhibition of thymidylate synthase (TS), the extent of DNA damage, cell cycle arrest, and the induction of apoptosis by FdUMP[10] and 5FU in the human colorectal cancer cell line HT29. The magnitude and duration of TS inhibition following exposure of HT29 cells to FdUMP[10] at 1 x 10(-8) M was greater than that which occurred following exposure of these cells to 5FU at 1 x 10(-6) M. FdUMP[10] exposure also resulted in much more extensive DNA damage to HT29 cells than occurred following exposure to 100-fold higher concentrations of 5FU. Although exposure of HT29 cells to both drugs resulted in S-phase arrest, more complete accumulation of cells in S-phase was achieved following FdUMP[10] exposure at much lower drug concentrations. FdUMP[10] was also much more effective at inducing apoptosis in HT29 cells than was 5FU. The results are consistent with FdUMP[10] being much more efficient that 5FU at inducing DNA damage that results in apoptotic cell death in colon cancer cells.  相似文献   

2.
Thymidylate synthase (TS) is indispensable in the de novo synthesis of dTMP. As such, it has been an important target at which anti-neoplastic drugs are directed. The fluoropyrimidines 5-fluorouracil and 5-fluoro-2'-deoxyuridine are cytotoxic as a consequence of inhibition of TS by the metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). This inhibition occurs through formation of a stable ternary complex among the enzyme, the nucleotide analog, and the co-substrate N5, N10-methylenetetrahydrofolate. Numerous studies have shown that cellular concentrations of TS undergo about a 2-4-fold induction following treatment with TS inhibitors. An extensive body of in vitro studies has led to the proposal that this induction occurs because of relief of the translational repression brought on by the binding of TS to its own mRNA. In the current study, we have tested several predictions of this autoregulatory translation model. In contrast to expectations, we find that fluoropyrimidines do not cause a change in the extent of ribosome binding to TS mRNA. Furthermore, mutations within the mRNA that abolish its ability to bind TS have no effect on the induction. Finally, enzyme turnover measurements show that the induction is associated with an increase in the stability of the TS polypeptide. Our results, in total, indicate that enzyme stabilization, rather than translational derepression, is the primary mechanism of TS induction by fluoropyrimidines and call into question the general applicability of the autoregulatory translation model.  相似文献   

3.
The causal metabolic pathway and the underlying mechanism between folate deficiency and neural tube defects (NTDs) remain obscure. Thymidylate (dTMP) is catalyzed by thymidylate synthase (TS) using the folate-derived one-carbon unit as the sole methyl donor. This study aims to examine the role of dTMP biosynthesis in the development of neural tube in mice by inhibition of TS via a specific inhibitor, raltitrexed (RTX). Pregnant mice were intraperitoneally injected with various doses of RTX on gestational day 7.5, and embryos were examined for the presence of NTDs on gestational day 11.5. TS activity and changes of dUMP and dTMP levels were measured following RTX treatment at the optimal dose. DNA damage was determined by detection of phosphorylated replication protein A2 (RPA2) and γ-H2AX in embryos with NTDs induced by RTX. Besides, apoptosis and proliferation were also analyzed in RTX-treated embryos with NTDs. We found that NTDs were highly occurred by the treatment of RTX at the optimal dose of 11.5 mg/kg b/w. RTX treatment significantly inhibited TS activity. Meanwhile, dTMP was decreased associated with the accumulation of dUMP in RTX-treated embryos. Phosphorylated RPA2 and γ-H2AX were significantly increased in RTX-treated embryos with NTDs compared to control. More apoptosis and decreased proliferation were also found in embryos with NTDs induced by RTX. These results indicate that impairment of dTMP biosynthesis caused by RTX led to the development of NTDs in mice. DNA damage and imbalance between apoptosis and proliferation may be potential mechanisms.  相似文献   

4.
We have investigated some unusual aspects of the inhibition of mammalian thymidylate synthase (TS) by the folate antimetabolite, 10-propargyl-5,8-dideaza-folic acid (CB 3717). From our results, we conclude that binding of CB 3717 metabolites to one subunit of L1210 TS modified the conformation of the second active site of this enzyme so that it retained the ability to bind 5-fluro-2'-deoxyuridine-5'-monophosphate (FdUMP) but not its catalytic activity. Exposure of intact mouse L1210 cells to CB 3717 resulted in inactivation of cellular TS activity, yet desalted cytosol preparations from these cells retained the ability to bind FdUMP. The same effect was found with several analogs of CB 3717. Complexes of FdUMP formed in vitro with TS from cells exposed to CB 3717 were covalent and co-migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with complexes of FdUMP, folate cofactor, and TS from cells not exposed to CB 3717. In the presence of dUMP, a tightly bound complex rapidly formed between isolated pure TS and the pentaglutamate of CB 3717 but not the monoglutamate form of this compound. Binding experiments using CB 3717 pentaglutamate-inhibited TS suggested a stoichiometry of 1 mol of FdUMP bound per mol of dimeric TS.  相似文献   

5.
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.  相似文献   

6.
Colorectal cancer is one of the most common human cancers, for which 5-fluorouracil (5FU) is usually part of the treatment. Thymidylate synthase (TS), the target enzyme for 5FU, can be predictive for the outcome of 5FU-based therapy. TS levels in tumor samples can be determined with radiochemical enzyme assays, RT-PCR, and immunohistochemical staining. We validated TS immunohistochemistry with a polyclonal rabbit anti-human TS antibody using the avidin-biotin method. This antibody can be used on paraffin-embedded, formalin-fixed material using an antigen retrieval method with citrate buffer and microwave treatment. The antibody shows a granular cytosolic staining pattern. The reproducibility in cross-sections from colorectal tumors from 50 patients was 90% and the interobserver variability was acceptable with a kappa of 0.45. On Western blotting it detects purified TS at 36 kD, while in 5FU-treated cells the ternary complex between FdUMP, TS, and 5, 10-methylene-tetrahydrofolate is clearly visible at 38 kD, with no other interfering bands. In a separate set of tumors, immunostaining was compared with enzyme levels; Western blots correlated with enzyme levels. Because both this polyclonal antibody and the monoclonal antibody TS-106 are being used for large-scale studies, we also determined whether they could be used interchangeably. No differences were observed. This polyclonal antibody is specific and gives reproducible results. A study on a larger scale is ongoing to determine the role of TS as a predictive parameter in patients with colorectal cancer treated either with postoperative adjuvant 5FU/levamisole or with surgery only.  相似文献   

7.
Luo Y  Walla M  Wyatt MD 《DNA Repair》2008,7(2):162-169
Thymidylate synthase (TS) is an important target of several chemotherapeutic agents, including 5-FU and raltitrexed (Tomudex). During TS inhibition, TTP levels decrease with a subsequent increase in dUTP. Uracil incorporated into the genome is removed by base excision repair (BER). Thus, BER initiated by uracil DNA glycosylase (UDG) activity has been hypothesized to influence the toxicity induced by TS inhibitors. In this study we created a human cell line expressing the Ugi protein inhibitor of UNG family of UDGs, which reduces cellular UDG activity by at least 45-fold. Genomic uracil incorporation was directly measured by mass spectrometry following treatment with TS inhibitors. Genomic uracil levels were increased over 4-fold following TS inhibition in the Ugi-expressing cells, but did not detectably increase in UNG proficient cells. Despite the difference in genomic uracil levels, there was no difference in toxicity between the UNG proficient and UNG-inhibited cells to folate or nucleotide-based inhibitors of TS. Cell cycle analysis showed that UNG proficient and UNG-inhibited cells arrested in early S-phase and resumed replication progression during recovery from RTX treatment almost identically. The induction of gamma-H2AX was measured following TS inhibition as a measure of whether uracil excision promoted DNA double strand break formation during S-phase arrest. Although gamma-H2AX was detectable following TS inhibition, there was no difference between UNG proficient and UNG-inhibited cells. We therefore conclude that uracil excision initiated by UNG does not adequately explain the toxicity caused by TS inhibition in this model.  相似文献   

8.
2′,2′-Difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a cytidine analogue active against several solid tumor types, such as ovarian, pancreatic and non-small cell lung cancer. The compound has a complex mechanism of action. Because of the structural similarity of one metabolite of dFdC, dFdUMP, with the natural substrate for thymidylate synthase (TS) dUMP, we investigated whether dFdC and its deamination product 2′,2′-difluoro-2′-deoxyuridine (dFdU) would inhibit TS. This study was performed using two solid tumor cell lines: the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000. The specific TS inhibitor Raltitrexed (RTX) was included as a positive control. Using the in situ TS activity assay measuring the intracellular conversion of [5-3H]-2′-deoxyuridine or [5-3H]-2′-deoxycytidine to dTMP and tritiated water, it was observed that dFdC and dFdU inhibited TS. In A2780 cells after a 4 h exposure to 1 μM dFdC tritium release was inhibited by 50% but did not increase after 24 h, Inhibition was also observed following dFdU at 100 μM. No effect was observed in the dFdC-resistant cell line AG6000; in this cell line only RTX had an inhibitory effect on TS activity. In the A2780 cell line RTX inhibited TS in a time dependent manner. In addition, DNA specific compounds such as 2′-C-cyano-2′-deoxy-1-beta-D-arabino-pentafuranosylcytosine and aphidicoline were utilized to exclude DNA inhibition mediated down regulation of the thymidine kinase.Inhibition of the enzyme resulted in a relative increase of mis-incorporation of [5-3H]-2′-deoxyuridine into DNA. In an attempt to elucidate the mechanism of in situ TS inhibition the ternary complex formation and possible inhibition in cellular extracts of A2780 cells, before and after exposure to dFdC, were determined. With the applied methods no proof for formation of a stable complex was found. In simultaneously performed experiments with 5FU such a complex formation could be demonstrated. However, using purified TS it was demonstrated that dFdUMP and not dFdCMP competitively inhibited TS with a Ki of 130 μM, without ternary complex formation. In conclusion, in this paper we reveal a new target of dFdC: thymidylate synthase.  相似文献   

9.
West DK  Porter DC  Saxl RL  Maley F 《Biochemistry》2004,43(28):9177-9184
In this paper we present a new and possibly more effective way of inhibiting thymidylate synthase (TS) in cells than through the use of substrate analogue inhibitors. An inactive double mutant of TS (DM), Arg(126)Glu/Cys(146)Trp, is shown to progressively impair the reactivation of native Escherichia coli TS when the two are denatured together in vitro. The individual single mutant proteins Arg(126)Glu and Cys(146)Trp showed little or no inhibition. When the DM is introduced into E. coli and induced from an expression plasmid, the mutant subunits act as a decoy in deceiving newly formed native TS subunits to fold with them to yield inactive heterodimers. As a consequence of the depletion of TS, the cells die a "thymineless" death when grown in medium devoid of thymine. Addition of thymine to the medium enables the cells to grow normally, although only very low levels of TS activity could be detected in those cells containing induced DM. The individual single-site mutations of the DM, Arg(126)Glu and Cys(146)Trp, did not inhibit growth, as might be expected from the in vitro studies. However, when a nontoxic level of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) is added to growing DM-transformed cells, the combination is lethal to the cells. These experiments suggest that a similar dominant-negative response to the DM of TS could be affected in tumor cells, for which preliminary evidence is presented. This technique, either alone or combined with other modalities, suggest a new approach to targeting cells for chemotherapy.  相似文献   

10.
Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death.  相似文献   

11.
A radiochemical assay for thymidylate synthase (EC 2.1.1.45, dTMP synthase), which permits the accurate determination of total, free, and 5-fluoro-2′-deoxyuridylate (FdUMP)-bound enzyme in cells exposed to the 5-fluoropyrimidine anticancer agents, is described. The total intracellular concentrations of dTMP synthase (free plus FdUMP-bound enzyme) in extracts from CCRF-CEM leukemic cells incubated with 5-fluoro-2′-deoxyuridine were determined following dissociation of the covalent dTMP synthase-5,10-methylenetetrahydrofolate-FdUMP ternary complex in the presence of the substrate, 2′-deoxyuridine-5′-monophosphate. The addition of substrate prevented reformation of the ternary complex during the dissociation procedure, and allowed complete recovery of FdUMP binding sites in cells exposed to a high concentration of 5-fluoro-2′-deoxyuridine. After removal of the substrate by charcoal adsorption, the concentration of total FdUMP binding sites was determined by titration of the enzyme with a saturating concentration of [6-3H]FdUMP and 5,10-methylenetetrahydrofolate. The concentration of FdUMP-bound dTMP synthase was then calculated as the difference between the total and free (without prior ternary complex disruption) enzyme values. The high sensitivity of this assay coupled with its ability to accurately quantitate both free and FdUMP-bound dTMP synthase in cells exposed to a wide range of fluoropyrimidine concentrations should make it useful for a variety of experimental and clinical studies.  相似文献   

12.
Author index     
Thymidylate synthetase has been purified from cultures of Escherichia coli infected with bacteriophages T4 or T5, with the T4 enzyme being purified to at least 50% of homogeneity, and both enzymes being resolved from the corresponding host enzyme. The molecular weights are 58,000 for the T4 enzyme and 55,000 for the T5 enzyme, as estimated by gel filtration and confirmed for the T4 enzyme by sucrose gradient analysis. Disc gel electrophoresis of the T4 enzyme in sodium dodecyl sulfate gives a single band with a molecular weight of 29,000, suggesting that the enzyme is composed of two subunits. Kinetic analysis of the inhibition of the T4 enzyme by 5-fluorodeoxyuridylate (FdUMP) gives results similar to those earlier reported for the T2 and T6 enzymes. Inhibition is competitive with respect to deoxyuridylate (dUMP) if the enzyme is not preincubated with inhibitor, but a brief preincubation of enzyme and inhibitor in the presence of 5, 10-methylenetetrahydrofolate generates a pattern of noncompetitive, stoichiometric inhibition. FdUMP remains bound to the enzyme through gel filtration chromatography, consistent with various observations that this inhibitor is covalently bound. However, the enzyme-inhibitor complex is dissociated by treatment with sodium dodecyl sulfate prior to chromatography. Moreover, in contrast to studies on thymidylate synthetase from other sources, oxidation of tetrahydrofolate by FdUMP-inhibited enzyme could not be detected. Inhibition of the T5 enzyme by FdUMP is not stoichiometric, and the enzyme-inhibitor complex is readily dissociated by gel filtration. These findings suggest that there are significant differences in mechanism of FdUMP binding by thymidylate synthetases of different origins. Inhibition of the T4 enzyme by trifluoromethyldeoxyuridine 5′-monophosphate (F3dTMP) follows the kinetics of stoichiometric inhibition, but data from both gel filtration and enzyme-inhibitor titration indicate that the enzyme binds 12–13 times as much F3dTMP as FdUMP, suggesting that most of the F3dTMP is bound at noncatalytic sites.  相似文献   

13.
Fluorouracil (5FU) acts by RNA-incorporation and inhibition of thymidylate synthase; the first action is counteracted by uridine, and the second is enhanced by leucovorin (LV). Growth inhibition of C26-10 colon cancer cells by 5FU was enhanced by LV and rescued by uridine, but 5FU-LV was only partially rescued by uridine. In WiDr cells, 5FU sensitivity was not enhanced by LV, while both 5FU and 5FU-LV were rescued by uridine. Intermediate trends were found in SW948 and HT29 cells. Uridine rescue in mice allowed 1.5-fold increase in 5FU dose, leading to 2-fold increase in the antitumor effect and thymidylate synthase inhibition in resistant Colon-26 tumors. In the sensitive Colon-26-10 tumor, uridine rescue decreased 5FU-RNA incorporation > 10-fold, without affecting the antitumor activity. The use of LV and uridine can differentiate between two mechanisms of action of 5FU.  相似文献   

14.
Fluorouracil (5FU) acts by RNA-incorporation and inhibition of thymidylate synthase; the first action is counteracted by uridine, and the second is enhanced by leucovorin (LV). Growth inhibition of C26-10 colon cancer cells by 5FU was enhanced by LV and rescued by uridine, but 5FU-LV was only partially rescued by uridine. In WiDr cells, 5FU sensitivity was not enhanced by LV, while both 5FU and 5FU-LV were rescued by uridine. Intermediate trends were found in SW948 and HT29 cells. Uridine rescue in mice allowed 1.5-fold increase in 5FU dose, leading to 2-fold increase in the antitumor effect and thymidylate synthase inhibition in resistant Colon-26 tumors. In the sensitive Colon-26-10 tumor, uridine rescue decreased 5FU-RNA incorporation > 10-fold, without affecting the antitumor activity. The use of LV and uridine can differentiate between two mechanisms of action of 5FU.  相似文献   

15.
The action of 5‐Fluorouracil (5‐FU) is mediated by inhibition of thymidylate synthase (TS), which is regulated by cell cycle proteins controlled by protein phosphorylation. We studied the effects of staurosporine and its analogue UCN‐01, inhibitors of protein kinase C (PKC) on 5‐FU cytotoxicity in Lovo colon cancer cells. Each drug contributes equally to the cell cycle effects of the 5‐FU combinations. In sequential drug administration, the cell cycle distribution was determined by the first drug. Simultaneous 5‐FU combinations induced additive effects in induction of apoptosis. When staurosporine was used as the second drug, induction of apoptosis was 2‐fold higher than the sum of both drugs alone. Based on induction of apoptosis 5‐FU addition prior to the PKC inhibitors seemed preferable.  相似文献   

16.
Methodology that permits complete analysis of the intracellular metabolites of 5-fluorouracil (FUra) has been developed. A high-pressure liquid chromatography system that is capable of separating all metabolites of FUra found in acid-soluble cell extracts is described. In addition to the expected FUra metabolites, FUDP-hexoses were found to be present in large amounts in L121O cells treated with FUra. Improved procedures that permit quantitation of the FdUMP which is covalently bound to dTMP synthetase, as well as the total intracellular FdUMP levels are described; the latter is accomplished by dissociation of the FdUMP-dTMP synthetase complex in sonicated cell extracts followed by phosphatase treatment and subsequent high-pressure liquid chromatography analysis of FdUrd. An example of the integrated methodology in which all metabolites of FUra metabolism are analyzed over a 6-h exposure period of L1210 cells to [6-3H]FUra is provided.  相似文献   

17.
Bacillus anthracis is well known in connection with biological warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5'-monophosphate (dTMP) efficiently with K (m) and V (max) values of 33 microM and 48 micromol mg(-1) min(-1), respectively. The efficiency of deoxyuridine-5'-monophosphate phosphorylation was approximately 10% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2'-fluoroarabinosyl-5-methyldeoxyuridine-5'-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5'-monophosphate (5FdUMP) and 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4TMP). No activity could be detected with 3'-azidothymidine-5'-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and d-FMAU was a strong inhibitor with an IC(50) value of 10 microM, while other nucleosides--L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2'-arabinosylthymidine--were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents.  相似文献   

18.
Trifluorothymidine (TFT) can be phosphorylated by thymidine kinase (TK) to TFTMP which can inhibit thymidylate synthase (TS), resulting in depletion of thymidine nucleotides. TFT can be degraded by thymidine phosphorylase (TP) which can be inhibited by thymidine phosphorylase inhibitor (TPI). Using the TS in situ Inhibition Assay (TSIA) FM3A breast cancer cells were exposed 4 h or 24 h to TFT and 5-Fluorouracil (5FU). TS activity reduced to 9% (0.1 microM TFT) and 58% (1 microM 5FU) after 4 h exposure and to 6% (TFT) and 21% (5FU) after 24 h exposure. TPI did not affect TS inhibition by TFT. FM3A cells lacking TK or TS activity (FM3A/TK-) were far less sensitive to TFT compared to FM3A cells. Conclusion: TFT can be taken up and activated very rapidly by FM3A cancer cells, probably due to favourable TK enzyme properties, and TPI did not influence this.  相似文献   

19.
Trifluorothymidine (TFT) can be phosphorylated by thymidine kinase (TK) to TFTMP which can inhibit thymidylate synthase (TS), resulting in depletion of thymidine nucleotides. TFT can be degraded by thymidine phosphorylase (TP) which can be inhibited by thymidine phosphorylase inhibitor (TPI). Using the TS in situ Inhibition Assay (TSIA) FM3A breast cancer cells were exposed 4 h or 24 h to TFT and 5‐Fluorouracil (5FU). TS activity reduced to 9% (0.1 µM TFT) and 58% (1 µM 5FU) after 4 h exposure and to 6% (TFT) and 21% (5FU) after 24 h exposure. TPI did not affect TS inhibition by TFT. FM3A cells lacking TK or TS activity (FM3A/TK?) were far less sensitive to TFT compared to FM3A cells. Conclusion: TFT can be taken up and activated very rapidly by FM3A cancer cells, probably due to favourable TK enzyme properties, and TPI did not influence this.  相似文献   

20.
The thymidylate synthase (TS) activity in Leishmania major resides on the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR). We have isolated, either by Sephadex G-25 chromatography or by nitrocellulose filter binding, a binary complex between the substrate deoxyuridylate (dUMP) and TS from L. major. The kinetics of binding support a "slow binding" mechanism in which dUMP initially binds to TS in a rapid, reversible pre-equilibrium step (Kd approximately 1 microM), followed by a slow first-order step (k = 3.5 X 10(-3) s-1) which results in the isolable complex; the rate constant for the dissociation of dUMP from this complex was 2.3 X 10(-4) s-1, and the overall dissociation constant was approximately 0.1 microM. The stoichiometry of dUMP to enzyme appears to be 1 mol of nucleotide bound/mol of dimeric TS-DHFR. Binary complexes between the stoichiometric inhibitor 5-fluorodeoxyuridylate (FdUMP) and TS, and between the product deoxythymidylate (dTMP) and TS were also isolated by nitrocellulose filter binding. Competition experiments indicated that each of these nucleotides were binding to the same site on the enzyme and that this site was the same as that occupied by the nucleotide in the FdUMP-cofactor X TS ternary complex. Thus, it appeared that the binary complexes were occupying the active site of TS. However, the preformed isolable dUMP X TS complex is neither on the catalytic path to dTMP nor did it inhibit TS activity, even though the dissociation of dUMP from this complex is several orders of magnitude slower than catalytic turnover (approximately 3 s-1). The results suggest that dUMP binds to one of the two subunits of the native protein in a catalytically incompetent form which does not inhibit activity of the other subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号