首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (g s), net photosynthetic rate (P N), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of P N in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low g s values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment.  相似文献   

2.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

3.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

4.
Net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), stomatal conductance (gs), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low g s . Unlike S. oblata, the maximal photosynthetic rate (Pmax) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower PN together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.  相似文献   

5.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

6.
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil–seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil–seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical–chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil–seawater interfaces over a large temperature interval.  相似文献   

7.
Arthrospira (Spirulina) is widely used as human health food and animal feed. In cultures grown outdoors in open ponds, Arthrospira cells are subjected to various environmental stresses, such as high temperature. A better understanding of the effects of high temperature on photosynthesis may help optimize the productivity of Arthrospira cultures. In this study, the effects of heat stress on photosynthetic rate, chlorophyll a fluorescence transients, and photosystem (PS) II, PSI activities in a marine cyanobacterium Arthrospira sp. were examined. Arthrospira cells grown at 25 °C were treated for 30 min at 25 (control), 30, 34, 37, or 40 °C in the dark. Heat stress (30–37 °C) enhanced net photosynthetic O2 evolution rate. Heat stress caused over-reduction PSII acceptor side, damage of donor side of PSII, decrease in the energetic connectivity of PSII units, and decrease in the performance of PSII. When the temperature changed from 25 to 37 °C, PSII activity decreased, while PSI activity increased, the enhancement of photosynthetic O2 evolution was synchronized with the increase in PSI activity. When temperature was further increased to 40 °C, it induced a decrease in photosynthetic O2 evolution rate and a more severe decrease in PSII activity, but an increase in PSI activity. These results suggest that PSI activity was the decisive factor determining the change of photosynthetic O2 evolution when Arthrospira was exposed to a temperature from 25 to 37 °C, but then, PSII activity became the decisive factor adjusting the change of photosynthetic O2 evolution when the temperature was increased to 40 °C.  相似文献   

8.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

9.
This study evaluated the ability of a hydrothermal time model (HTT) to describe the kinetics of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination under different temperatures (T) and water potentials (ψ) and also to determine the cardinal temperatures of watermelon. Results indicated that ψ influenced germination rate and germination percentage. For this seed lot, cardinal temperatures were 10 °C for T b, 28.34 °C for T o and 40.8 °C for T c in the control (0 MPa) treatment. There was a decrease in hydrotime constant (θ H) when T was increased to T o and then remained constant at supra-optimal temperatures (30 MPah?1). Also, at temperatures above T o, ψ b(50) values increased linearly with T. The k T value (the slope of the relationship between ψ b(50) and T exceeds T o) of this seed lot was calculated as 0.076 MPa°Ch?1. Results this study show that when the HTT model is applied, it can accurately describe ψ b(g) and the course of germination around Ts (R 2 = 0.82). Moreover, the ψ b(50) was estimated to be ?0.96 MPa based on this model. Consequently, the germination response of watermelon for all Ts and ψs can be adequately described by the HTT model and enabling it to be used as a predictive tool in watermelon seed germination simulation models.  相似文献   

10.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

11.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 μmol(CO2) m?2s?1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 μmol(CO2) m?2s?1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 μmol(CO2) m?2s?1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.  相似文献   

12.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

13.
The interactive effects of shade and drought on the morphological and physiological traits of Catalpa bungei plantlets were assessed. Seedling growth, biomass, biomass allocation, leaf morphology, chlorophyll (Chl) content and gas-exchange parameters were measured in plants raised for 3 months under three light levels [80% (HI), 50% (MI), 30% (LI)] and two water levels [moisture (M) and drought (D)]. The results showed that shade greatly decreased growth, biomass, leaf area (LA) and Chl a/b; increased specific leaf area (SLA) and Chl content; and reduced photosynthetic rate (P n). Drought reduced the growth, biomass, LA, SLA, Chl a/b, P n, stomatal conductance (G s), transpiration rate (T r) and intercellular carbon dioxide concentration (C i) and increased the Chl content. Stomatal closure was an early physiological response to water stress. Light, water and their interaction significantly affected plant traits and their bivariate relationships. The phenotypic plasticity index of light (0.47) was much higher than that of water (0.21), indicating that light was the main driver of the variations observed. Under drought stress, growth, biomass, leaf and stem biomass allocation significantly decreased in the HI and MI environments, whereas no significant difference was observed in growth or biomass parameters under the LI condition. Furthermore, no significant difference was observed in P n, G s, or T r under the LI condition under water stress. Our results showed that shade did not alter the negative effects caused by drought stress in MI but did alleviate the negative effects of the LI condition. In summary, the effect of drought on C. bungei plantlets depends on the irradiance conditions.  相似文献   

14.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

15.
The variation of light intensity has obvious effects on leaf external morphology, internal anatomy, and physiological characteristics; it even induces changes in secondary metabolite production. The effects of different irradiance levels on biomass, gas exchange parameters, and photosynthetic pigment contents in Mahonia bodinieri (Gagnep.) Laferr. were analyzed here. Combined analyses of physiology, cytology, and HPLC were used to study the differences in leaf morphology, structure, physiological characters, and alkaloid content in response to different irradiances. The results indicated that the highest foliar biomass was observed under I 50 (50 % of full sunlight) followed by I 30 (30 % of full sunlight), the highest net photosynthetic rate, stomatal conductance, transpiration rate values were observed under I 30 followed by I 50, and lower values occurred in I 10 (10 % of full sunlight) and I 100 (full sunlight). With increased light intensity, total leaf area and the contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and chlorophyll (Chl a+b) per unit leaf area were clearly reduced, whereas leaf mass per area, carotenoid content, leaf thickness, thickness of palisade and spongy parenchyma, and stomatal density were all significantly increased. Electron microscopic observation revealed that the number of grana, stroma lamellae and the number of starch grains in chloroplasts were decreased, the number of plastoglobuli was increased when irradiance levels increased. The estimated total yield of alkaloids in a single plant was higher under I 30 and I 50 than under I 10 or I 100 as a result of the higher biomass of the plants. Therefore, I 30 and I 50 were not only beneficial to increase biomass, but also suitable for the synthesis and accumulation of the major secondary metabolites (alkaloids). Our findings provide valuable data for the determination and regulation of irradiance levels during artificial cultivation of M. bodinieri.  相似文献   

16.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

17.
The increased frequency of heat waves due to climate change poses a threat to all organisms. Microalgae are the basis of aquatic food webs, and high temperatures have significant impacts on their adaptation and survival rates. Algae respond to environmental changes by modulating their photosynthetic rates and biochemical composition. This study aims to examine the effect of elevated temperature on similar taxa of marine Chlorella originating from different latitudes. Strains from the Antarctic, temperate zone, and the tropics were grown at various temperatures, ranging from 4 to 38, 18 to 38, and 28 to 40 °C, respectively. A pulse-amplitude modulated (PAM) fluorometer was used to assess their photosynthetic responses. Parameters including maximum quantum efficiency (F v/F m), relative electron transport rate (rETR), and light harvesting efficiency (α) were determined from the rapid light curves (RLCs). In addition, the composition of fatty acids was compared to evaluate changes induced by the temperature treatments. Increasing the temperature from 35 to 38 °C for both Antarctic and temperate strains and from 38 to 40 °C for the tropical strain resulted in severe inhibition of photosynthesis and suppressed growth. Although all the strains demonstrated the ability to recover from different stress levels, the tropical strain was able to recover most rapidly while the Antarctic strain had the slowest recovery. The results underline that the thermal threshold for the analysed Chlorella strains temperature ranges between 38 and 40 °C. Furthermore, the analysed strains exhibited different trends in their response to elevated temperatures and recovery capabilities.  相似文献   

18.
An experiment was performed to study gas exchange and chlorophyll fluorescence responses of rice (Oryza sativa L.) to various regimes, such as flooding–midseason drying–flooding (FDF), flooding–midseason drying–saturation (FDS), and flooding–rain-fed (FR) regimes. Compared to FDF, FR resulted in an obvious decrease in net photosynthetic rate (PN), due to the decrease in stomatal conductance and the increase in stomatal limitation. In contrast, FDS plants did not suffer stomatal limitation and had comparable PN with FDF plants. For diurnal light-saturated electron transport rate and saturation irradiance, FDF performed the best, which was followed by FDS and FR successively. FR and FDS plants tended to suffer from midday depression. FDS reduced irrigated water by 17.2% compared to FDF for comparable yields. The results suggested that FDS can be an effective irrigation regime to save water.  相似文献   

19.
Comparing with other angiosperms, most members within the family Orchidaceae have lower photosynthetic capacities. However, the underlying mechanisms remain unclear. Cypripedium and Paphiopedilum are closely related phylogenetically in Orchidaceae, but their photosynthetic performances are different. We explored the roles of internal anatomy and diffusional conductance in determining photosynthesis in three Cypripedium and three Paphiopedilum species, and quantitatively analyzed their diffusional and biochemical limitations to photosynthesis. Paphiopedilum species showed lower light-saturated photosynthetic rate (A N), stomatal conductance (g s), and mesophyll conductance (g m) than Cypripedium species. A N was positively correlated with g s and g m. And yet, in both species A N was more strongly limited by g m than by biochemical factors or g s. The greater g s of Cypripedium was mainly affected by larger stomatal apparatus area and smaller pore depth, while the less g m of Paphiopedilum was determined by the reduced surface area of mesophyll cells and chloroplasts exposed to intercellular airspace per unit of leaf area, and much thicker cell wall thickness. These results suggest that leaf anatomical structure is the key factor affecting g m, which is largely responsible for the difference in photosynthetic capacity between those two genera. Our findings provide new insight into the photosynthetic physiology and functional diversification of orchids.  相似文献   

20.
Korean Saccharina japonica is highly valued, both for human consumption and abalone feed. For the stable production of abalone feed, fresh seaweed biomass is required throughout the year. However, currently, the production of farmed Saccharina is limited by environmental conditions such as temperature, irradiance, and nutrient availability between August and November. Due to shortages experienced in supply, the production of early-season biomass can be highly profitable and, therefore, some famers attempt to start their cultivation activities before prevailing, surface seawater temperatures (SST) are optimal. However, attempting to cultivate too early, can lead to total crop failure. Young kelp sporophytes are easily destroyed between 18 and 22 °C SST, which can occur during the early nursery period when the materials are confined to tanks. This study investigated the growth of S. japonica thalli and photosynthetic quantum yield (Fv/Fm) under five temperatures (i.e., 18–26 °C, at 2° increments) and five irradiances (i.e., 5, 10, 20, 40, and 80 μmol photons m?2 s?1). This was undertaken for four different size groups of sporophyte thalli (i.e., 0.25, 1, 5, 10 mm). There were different responses of the initial groups of S. japonica showing different tolerances to temperature and irradiance. In general, the smaller plants (1 mm) were more tolerant of sub-optimal conditions than their larger cohorts. These results indicated the optimum temperature and irradiance ranges for different size groups of S. japonica thalli which, if adopted in management protocols, could contribute to enhanced profitability and a more stable and evenly distributed production of Saccharina raw materials over an entire annual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号