首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the yeast Saccharomyces cerevisiae, the molecular chaperone HSP26 has the remarkable ability to sense increases in temperature directly and can switch from an inactive to a chaperone-active state. In this report, we analyzed the effect of expression of HSP26 in Arabidopsis thaliana plants and their response to high temperature stress. The hsp26 transgenic plants exhibited stronger growth than wild type plants at 45 °C for 16 h. The chlorophyll content and chlorophyll fluorescence decreased much more in wild type than in transgenic plants. Moreover, the transgenic plants had higher proline and soluble sugar contents, and lower relative electrical conductivity and malondialdehyde contents after high temperature stress. Furthermore, we found that over-expression of HSP26 in Arabidopsis increased the amount of free proline, elevated the expression of proline biosynthetic pathway genes and therefore enhanced Arabidopsis tolerance to heat stress.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Gan Y  Filleur S  Rahman A  Gotensparre S  Forde BG 《Planta》2005,222(4):730-742
The ANR1 MADS-box gene in Arabidopsis thaliana (L.) Heynh. has previously been identified as a key regulator of lateral root growth in response to signals from external nitrate (NO3). We have used quantitative real-time PCR to investigate the responsiveness of ANR1 and 11 other root-expressed MADS-box genes to fluctuations in the supply of N, P and S. ANR1 expression in roots of hydroponically grown Arabidopsis plants was specifically regulated by changes in the N supply, being induced by N deprivation and rapidly repressed by N re-supply. This pattern of N responsiveness differs from the NO3 -inducibility of ANR1 previously observed in Arabidopsis root cultures [H.M. Zhang and B.G. Forde (1998) Science 279:407–409]. Seven of the other MADS-box genes responded to N in a manner similar to ANR1, but less strongly, while four (AGL12, AGL17, AGL18 and AGL79) were unaffected. Six of the N-regulated genes (ANR1, AGL14, AGL16, AGL19, SOC1 and AGL21) belong to just two clades within the type II MADS-box lineage, while the other two (AGL26 and AGL56) belong to the poorly characterized type I lineage. Only SOC1 was additionally found to respond to changes in the P and S supply, suggesting a possible role in a general response to nutrient stress. Studies with an ANR1 transposon-insertion mutant provided no evidence for regulatory interactions between ANR1 and the other root-expressed MADS-box genes. The implications of the current data for our understanding of the role of ANR1 and other MADS box genes in the nutritional regulation of lateral root growth are discussed.  相似文献   

10.
11.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

12.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

13.
14.
Cytokinin dehydrogenase (CKX) is responsible for regulating the endogenous cytokinin content by oxidative removal of the side chain and seven distinct genes, AtCKX1 to AtCKX7, code for the enzyme in Arabidopsis thaliana. The recombinant enzyme AtCKX2 was produced in Saccharomyces cerevisiae after expressing the corresponding gene from a plasmid (pDR197) or following chromosomal integration, under either the constitutive promoter PMA1 or the inducible promoter GAL1. The recombinant protein was purified from yeast culture media using a sequence of chromatographic steps. The purified enzyme had a molecular mass of 61 kDa and a typical flavoprotein spectrum. The specific activity of the enzyme was 87.8 μkat g−1, with isopentenyladenine as a substrate and 2,3-dimethoxy-5-methyl-p-benzoquinone as an electron acceptor. The pH optimum lay between 7.0 and 8.0, depending on the electron acceptor used. AtCKX2 reacts both with isoprenoid and aromatic cytokinins, the activity with isoprenoid cytokinins being two to three orders of magnitude higher. AtCKX2 prefers p-quinones and the synthetic dye 2,6-dichlorophenol indophenol as electron acceptors, although low reactivity with oxygen can also be observed. This study presents the first purification and characterization of the enzyme from Arabidopsis thaliana.  相似文献   

15.
Wang H  Liang Q  Cao K  Ge X 《Planta》2011,233(6):1287-1292
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment, protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants.  相似文献   

16.
17.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

18.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

19.
20.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号