首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Growth, ionic responses, and expression of candidate genes to salinity stress were examined in two perennial ryegrass accessions differing in salinity tolerance. The salinity tolerant (PI265349) and sensitive accessions (PI231595) were subjected to 75-mM NaCl for 14 days in a growth chamber. Across two accessions, salinity stress increased shoot dry weight and concentrations of malondialdehyde (MDA) and Na+ in the shoots and roots, but decreased shoot Ca2+ and root K+ concentrations. Salinity stress also increased root expressions of SOS1, PIP1, and TIP1. Plant height and chlorophyll content were unaffected by salinity stress in the tolerant accession but significantly decreased in the sensitive accession. Shoot MDA content did not change in the tolerant accession but increased in the sensitive accession. A more dramatic increase in Na+ was found in the roots of the sensitive accession. Relative to the control, salinity stress reduced expression of SOS1, NHX1, PIP1, and TIP1 in the shoots but increased expression of these genes in the roots of the tolerant accession. Expression levels of SOS1 increased in the roots and expression of NHX1 increased in the shoots but decreased in the roots of the sensitive accession under salinity stress. A decline in PIP1 expression in the shoots and dramatic increases in TIP expression in both shoots and roots were found in the sensitive accession under salinity stress. The results suggested maintenance of plant growth and leaf chlorophyll content, lesser Na+ accumulation in the roots, and lower lipid peroxidation in the shoots which could be associated with salinity tolerance. The decreased expressions of SOS1, NHX1, and TIP1 in the shoots, and increased expressions of NHX1 and PIP1 in the roots might also be related to salinity tolerance in perennial ryegrass.  相似文献   

2.
This study was performed to understand the mechanisms for Se-enhanced resistance of parsley (Petroselinum crispum L.) plants to salinity stress. Plant growth was negatively affected by salt stress; however, Se treatments at 1 mg/L significantly improved the growth rate and enhanced the salt tolerance of seedlings. This increased tolerance in Se-supplied plants was obtained by reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v/F m) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). The performance index (PIABS), as evidence for modulation of PSII function, was downregulated by salt stress; while Se mitigated this effect. Moreover, analysis of OJIP transients demon-strated that Se reduced salt damaging effect on PSII function through improvement of excitation energy trapping (TR0/CS) and electron transport (ET0/CS) per excited cross-section of leaf. The Na concentrations in shoots and roots of parsley seedlings considerably enhanced after NaCl treatment. Interestingly, treatment of salt-stressed plants with Se decreased the Na contents in shoots via the limitation of the root-to-shoot translocation of Na and exclusion of Na from cell sap, as well as the retention of K/Na and Ca/Na ratios. These data provide the first evidence that the Se application alleviates salinity stress by enhancing PSII function and by decreasing Na content in the shoot via binding of Na to the root cell wall.  相似文献   

3.
Nutrient concentration in wheat and soil under allelopathy treatments   总被引:2,自引:0,他引:2  
Allelopathy is related to soil nutrient availability and allelochemicals can change the soil and therefore the plant nutrient status. Wheat is one of the most important crops for the production of human food in the world. Alhagi maurorum and Cardaria draba are the most important weeds in wheat fields. We performed experiments to assess the allelopathic effect of A. maurorum and C. draba shoots on mineral nutrient concentrations in pot-grown wheat plants and soil. The presence of dry powder of A. maurorum and C. draba shoots reduced concentrations of macronutrients (NO3 ?, K+, Ca2+ and P) and micronutrients (Fe2+ and Cu2+) in roots and shoots of wheat plants, whereas it did not affect concentrations of Mg2+, Mn2+ and Zn2+. Allelopathic effect of A. maurorum was significantly greater than that of C. draba. There was a significantly positive correlation between wheat growth and ion concentration. There was a significantly negative correlation between the soil nutrient concentration and plant nutrient concentration across the treatments. These results suggest that allelopathy increases the nutrient availability in the soil because of the decrease in absorption by plants.  相似文献   

4.
Sixty seven-days-old plants of Ammi majus L. were subjected for 46 d to sand culture at varying concentrations of NaCl, i.e. 0 (control), 40, 80, 120, and 160 mM. Increasing salt concentrations caused a significant reduction in fresh and dry masses of both shoots and roots as well as seed yield. However, the adverse effect of salt was more pronounced on seed yield than biomass production at the vegetative stage. Calculated 50 % reduction in shoot dry mass occurred at 156 mM (ca.15.6 mS cm?1), whereas that in seed yield was at 104 mM (ca.10.4 mS cm?1). As in most glycophytes, Na+ and Cl? in both shoots and roots increased, whereas K+ and Ca2+ decreased consistently with the successive increase in salt level of the growth medium. Plants of A. majusmaintained markedly higher K+/Na+ ratios in the shoots than those in the roots, and the ratio remained more than 1 even at the highest external salt level (160 mM). Net photosynthetic (PN) and transpiration (E) rates remained unaffected at increasing NaCl, and thus these attributes had a negative association with salt tolerance of A. majus. Proline content in the shoots increased markedly at the higher concentrations of salt. Essential oil content in the seed decreased consistently with increase in external salt level. Overall, A. majusis a moderately salt tolerant crop whose response to salinity is associated with maintenance of high shoot K+/Na+ ratio and accumulation of proline in shoots, but PN had a negative association with the salt tolerance of this crop.  相似文献   

5.
The effects of multi-wall carbon nanotubes (MWCNTs) on plant growth and Cd/Pb accumulation was investigated on seedlings of three plant species including Brassica napus L., Helianthus annus L. and Cannabis sativa L. The experiment consisted of MWCNTs on three concentration levels (0, 10, 50 mg/L) and 200 μM CdCl2 or 500 μM Pb(NO3)2. MWCNTs application effectively improved root and shoot growth inhibited by Cd and Pb salts. In B. napus, total chlorophyll (Chl) content increased by both MWCNTs 10 and 50 mg/L exposure under cadmium or lead stress. MWCNT 10 mg/L mitigated the deleterious effects of Cd ions on total chlorophyll content of H. annus and C. sativa. Wherease higher concentration of MWCNTs decreased Chl content under either Cd or Pb treatments on sunflower seedlings. MWCNT10 effectivly raised cadmium accumulation in seedlings of all three species. MWCNT10 and 50 mg/L also caused higher Pb accumulation in canola and cannabis seedlings, respectively. Based on the results, it seems that the effects of MWCNTs on growth parameters and heavy metal accumulation in plant seedlings is strongly depends on heavy metal type, MWCNTs concentration and plant species.  相似文献   

6.
In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.  相似文献   

7.
8.
9.
The contents of Na+, K+, water, and dry matter were measured in leaves and roots of euhalophytes Salicornia europaea L. and Climacoptera lanata (Pall.) Botsch featuring succulent and xeromorphic cell structures, respectively, as well as in saltbush Atriplex micrantha C.A. Mey, a halophyte having bladder-like salt glands on their leaves. All three species were able to accumulate Na+ in their tissues. The Na+ content in organs increased with elevation of NaCl concentration in the substrate, the concentrations of Na+ being higher in leaves than in roots. When these halophytes were grown on a NaCl-free substrate, a trend toward K+ accumulation was observed and was better pronounced in leaves than in roots. Particularly high K+ concentrations were accumulated in Salicornia leaves. There were no principal differences in the partitioning of Na+ and K+ between organs of three halophyte species representing different ecological groups. At all substrate concentrations of NaCl, the total content of Na+ and K+ in leaves was higher than in roots. This distribution pattern persisted in Atriplex possessing salt glands, as well as in euhalophytes Salicornia and Climacoptera. The physiological significance of such universal pattern of ion accumulation and distribution among organs in halophytes is related to the necessity of water absorption by roots, its transport to shoots, and maintenance of sufficient cell water content in all organs under high soil salinity.  相似文献   

10.
11.
In this paper, we characterized a differentially expressed receptor-like cytoplasmic kinase XCRK, which confers resistance to bacterial leaf streak (BLS). We analyzed the tissue expression of XCRK and showed that XCRK was widely expressed in multiple rice (Oryza sativa) organs, including internodes, roots, leaves and flowers. In addition, the expression of XCRK was significantly induced by ABA, salt and H2O2 treatments, suggesting its function in these pathways. The XCRK-overexpressing transgenic seedlings exhibited higher tolerance to Xanthomonas oryzae pv.oryzicola (Xoc) compared with the wild-type seedlings. Furthermore, XCRK-overexpressing seedlings showed stronger antioxidant capacity with reduced MDA and H2O2 content and higher antioxidant enzyme activities. It has been hypothesized that the enhanced Xoc tolerance was attributed to the improved expression of resistance-responsive factors positively regulated by XCRK. In accordance with this, the expression of resistance and oxidation-related genes Wrky77, Wrky13, PAL1, PR5, Fe-SOD and SodCc2 were up-regulated by the overexpression of XCRK, which might contribute collectively to the increased Xoc tolerance. Overall, overexpression of XCRK could enhance the antioxidant capacity and Xoc tolerance in rice.  相似文献   

12.
An investigation was carried out to understand the mechanism(s) underlying enhanced Fe or Zn uptake in low Fe–Zn accumulator wheat genotype 4HPYT-414, due to inoculation of siderophore-producing and zinc-solubilizing endophytes—Arthrobacter sulfonivorans DS-68 and Arthrobacter sp. DS-179. Root anatomical features, using transmission electron microscopy (TEM), qualitative and quantitative aspects of production of organic acids and sugars in root exudates, and expression of TaZIP genes were analysed to relate to endophyte-mediated higher concentrations of Fe and Zn in the roots and shoots of wheat plants. TEM studies revealed that the endodermis, cortical region, root hair extension, xylem and xylem vessels, pericycle and vascular bundles were more pronounced and thicker in inoculated treatments, as compared to control. The organic acid profile of root exudates revealed five types of organic acids, with citric acid being predominant. Inoculation of A. sulfonivorans and Arthrobacter sp. brought about 5- and eightfold increases in the amounts of acids, respectively, as compared to control, particularly citric acid, succinic acid and acetic acid. Among the four TaZIP genes targeted, expression was achieved only for TaZIP3 and TaZIP7 genes, which showed 1–2 fold increases in the inoculated treatments. The results clearly indicated that the endophyte-mediated overexpression of TaZIP3 and TaZIP7 genes in roots and shoots, and the observed anatomical and exudate changes were acting synergistically in facilitating higher Fe and Zn translocation in roots and shoots.  相似文献   

13.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

14.
Although salt stress mainly disturbs plant root growth by affecting the biosynthesis and signaling of phytohormones, such as gibberellin (GA) and auxin, the exact mechanisms of the crosstalk between these two hormones remain to be clarified. Indole-3-acetic acid (IAA) is a biologically active auxin molecule. In this study, we investigated the role of Arabidopsis GA20-oxidase 2 (GA20ox2), a final rate-limiting enzyme of active GA biosynthesis, in IAA-directed root growth under NaCl stress. Under the NaCl treatment, seedlings of a loss-of-function ga20ox2-1 mutant exhibited primary root and root hair elongation, altered GA4 accumulation, and decreased root Na+ contents compared with the wild-type, transgenic GA20ox2-complementing, and GA20ox2-overexpression plant lines. Concurrently, ga20ox2-1 alleviated the tissue-specific inhibition of NaCl on IAA generation by YUCCAs, IAA transport by PIN1 and PIN2, and IAA accumulation in roots, thereby explaining how NaCl increased GA20ox2 expression in shoots but disrupted primary root and root hair growth in wild-type seedlings. In addition, a loss-of-function pin2 mutant impeded GA20ox2 expression, indicating that GA20ox2 function requires PIN2 activity. Thus, the activation of GA20ox2 retards IAA-directed primary root and root hair growth in response to NaCl stress.  相似文献   

15.
Basil cultivars are among most used crops worldwide, but high level of morpho-physiological variations is mainly due to the cultivation characteristics. The present study aimed to investigate the physiological changes and the accumulation of secondary metabolites as a response to prolonged nutrient deprivation in shoots and roots of sweet basil (Ocimum basilicum L. var. minimum). Sweet basil seedlings were grown in media with quarter, half and full strength of micro and macronutrients under different levels of KNO3 alone or in combination with different levels of NH4NO3. Evaluated parameters included characteristics of germination, development of leaves, content of photosynthetic pigments and responses of different parameters related to oxidative stress. While the early growth is influenced mainly due to NH4NO3 presence, all the levels of nutrient supply were found to trigger and maintain the antioxidant defence system of sweet basil seedlings. With the variations among seedling parts, the ammonium nutrition was notably enhanced levels of activity of SOD, CAT, A-POX, G-POX and P-POX, but had no effect on total antioxidant activity and total phenolic content, including flavonoids, which is mainly accumulated in nutrient deprived roots. In addition, phenylalanine ammonia-lyase activity was analysed and potential pathways of secondary metabolites synthesis were discussed. The enzymatic and non-enzymatic system in O. basilicum var. minimum seedlings was capable to reverse the stress conditions during growth under nutrient deprivation.  相似文献   

16.
Three homeologous copies of the TaSMT1 gene for C24-sterol methyltransferase, which are located on chromosomes A, B, and D of Triticum aestivum hexaploid genome, were discovered. The bioinformatic analysis of the structure of these genes and sequencing de novo promoter sequences revealed differential expression of homeologous TaSMT1 genes in leaves and roots of wheat seedlings under normal conditions and in stress.  相似文献   

17.
18.
Pine (Pinus sylvestris L.) seedlings grown under controlled conditions were subjected to water deficit (external water potentials ranging from–0.15 to–1.5 MPa) by adding polyethylene glycol 6000 (PEG) to the nutrient solution. Following this treatment, the dry weights of plant shoots and roots, as well as the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), nonphotochemical quenching (NPQ) of chlorophyll excitations, photosynthetic CO2/H2O exchange, dark respiration of needles, and water potential of mesophyll apoplast in the substomatal cavity of pine needles, were measured. The imposed water deficit was followed by the inhibition of seedling growth, suppression of photosynthesis and transpiration, and by the decreased content of photosynthetic pigments. It is shown for the first time that the closure of stomata in the needles of water-stressed pine seedlings falls into the physiological reaction norm and is caused by the reduction of water potential in the mesophyll apoplast of the substomatal cavity.  相似文献   

19.
This study was undertaken to evaluate genotoxic potential of Thermopsis turcica aqueous extracts on the roots of onion bulb (Allium cepa L.) by comet assay and random amplified polymorphic DNA technique. The Allium root growth inhibition test indicated that the EC50 and 2×EC50 values were 8 and 16 mg/ml concentrations of T. turcica aqueous extracts, respectively. The negative control (distilled water), positive control (methyl methane sulfonate, 10 mg/l) and 8 and 16 mg/ml concentrations of T. turcica extracts were introduced to the roots of onion bulbs for 24 and 96 h. The root growth, DNA damage in root cells and randomly amplified polymorphic DNA (RAPD) profiles of root tissue were used as endpoints of the genotoxicity. The comet assay clearly indicated that dose-dependent single strand DNA breaks in the root nuclei of onions were determined for the treatment concentrations of T. turcica extracts. In comparison to RAPD profile of negative control group, RAPD polymorphisms became evident as disappearance and/or appearance of RAPD bands in treated roots. The diagnostic and phenetic numerical analyses of RAPD profiles obviously indicated dose-dependent genotoxicity induced by Thermopsis extracts. In conclusion, the results clearly indicated that water extract of T. turcica has genotoxic potential on the roots of onion bulbs as shown by comet assay and RAPD technique.  相似文献   

20.
The responses of seedlings to solar radiation, including ultraviolet (UV), were investigated for Rhynchospora alba, an early colonizer, and Molinia japonica, a late colonizer, in a mined peatland in northern Japan. The solar radiation and rainfall were, respectively, higher and lower in 2008 than in 2009 during the field surveys. The seedlings were transplanted to bare ground, and measurements were made of the biomass, the allocation of biomass to shoots and roots, the absorbance of ultraviolet A and ultraviolet B, and the concentrations of anthocyanin and chlorophyll. R. alba did not change its biomass in response to any solar radiation treatment in 2008 and decreased shoot biomass with low UV and decreased root biomass with shade in 2009. Additionally, M. japonica did not change its biomass in 2008 but decreased its root biomass with low UV in 2009. The chlorophyll concentration of R. alba did not change in 2008 or 2009, whereas the chlorophyll concentration of M. japonica increased with decreased solar radiation, including UV. The UV absorbance of R. alba decreased under shade and with high peat moisture. In contrast, the content of UV-absorbing substances remained unchanged in M. japonica. Therefore, R. alba, the early colonizer, adapted more to strong solar radiation by changing its shoot-root allometry and producing UV-absorbing substances, whereas M. japonica, the late colonizer, tended to respond more to peat moisture. These differing responses to solar radiation and peat moisture may explain the temporal patterns of species replacement from early to late colonizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号