首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

2.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

3.
Soybean (Glycine max [L.] Merr.) root nodules contain the enzymes of the ascorbate-glutathione cycle for defense against activated forms of oxygen. Nodulated roots of hydroponically grown soybean plants were exposed to atmospheres containing 2, 21, 50, or alternating 21 and 50 kilopascals of O2. The activities of ascorbate (ASC) peroxidase, monodehydroascorbate (MDHA) reductase, dehydroascorbate (DHA) reductase, and glutathione (GSSG) reductase were higher in nodules exposed to high pO2. Nodule contents of ascorbate and reduced glutathione were also greater in the high pO2 treatments. Treatment of nodulated plants with fixed nitrogen (urea) led to concomitant decreases in acetylene reduction activity, in leghemoglobin content, and in activities of ASC peroxidase, DHA reductase, and GSSG reductase. Activity of MDHA reductase and glutathione concentrations in nodules were not affected by treatment with urea. The enzymes of the ascorbate-glutathione cycle were also detected in uninfected soybean roots, although at levels substantially below those in nodules. These observations indicate that the ascorbate-glutathione cycle can adjust to varying physiological conditions in nodules and that there is a key link between N2 fixation and defenses against activated forms of oxygen.  相似文献   

4.
In the present study the potentials of aqueous extracts of the two plants, neem (Azadirachta indica) and Tulsi (Ocimum sanctum) were examined in alleviating arsenic toxicity in rice (Oryza sativa L.) plants grown in hydroponics. Seedlings of rice grown for 8 days in nutrient solution containing 50 μM sodium arsenite showed decline in growth, reduced biomass, altered membrane permeability and increased production of superoxide anion (O2·−), H2O2 and hydroxyl radicals (·OH). Increased lipid peroxidation marked by elevated TBARS (thiobarbituric acid reactive substances) level, increased protein carbonylation, alterated levels of ascorbate, glutathione and increased activities of enzymes SOD (superoxide dismutase), CAT (catalase), APX (ascorbate peroxidase) and GPX (glutathione peroxidase) were noted in the seedlings on As treatment. Exogenously added leaf aqueous extracts of Azadirachta indica (0.75 mg mL−1, w/v) and Ocimum sanctum (0.87 mg mL−1, w/v) in the growth medium considerably alleviated As toxicity effects in the seedlings, marked by reduced As uptake, restoration of membrane integrity, reduced production of ROS, lowering oxidative damage and restoring the levels of ascorbate, glutathione and activity levels of antioxidative enzymes. Arsenic uptake in the seedlings declined by 72.5% in roots and 72.8% in shoots, when A. indica extract was present in the As treatment medium whereas with O. sanctum extract, the uptake declined by 67.2% in roots and 70.01% in shoots. Results suggest that both A. indica and O. sanctum aqueous extracts have potentials to alleviate arsenic toxicity in rice plants and that A. indica can serve as better As toxicity alleviator compared to O. sanctum.  相似文献   

5.
6.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

7.
The ascorbate-glutathione system was studied during development and maturation of beech (Fagus sylvatica L.) seeds, the classification of which in the orthodox category is controversial. This study revealed an increase in glutathione content after acquisition of desiccation tolerance, which was more intensive in embryonic axes than in cotyledons. During seed maturation, the redox status of glutathione markedly changed toward the more reducing state, especially in cotyledons. Ascorbic acid content decreased during maturation, mostly in cotyledons. Activities of the enzymes of the ascorbate-glutathione cycle—ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2)—were markedly higher in embryonic axes than in cotyledons throughout the study period. In the course of seed maturation, the activities of these enzymes decreased. Importance of the ascorbate-glutathione cycle in desiccation tolerance of beech seeds was discussed in relation to results for typical orthodox and recalcitrant seeds of other broadleaved species.  相似文献   

8.
The antioxidative system was studied during the development of pea plants. The reduced glutathione (GSH) content was higher in shoots than in roots, but a greater redox state of glutathione existed in roots compared with shoots, at least after 7 d of growth. The 3-d-old seedlings showed the highest content of oxidised ascorbate (DHA), which correlated with the ascorbate oxidase (AAO) activity. Also, the roots exhibited higher DHA content than shoots, correlated with their higher AAO activity. The activities of antioxidant enzymes were much higher in shoots than in roots. Ascorbate peroxidase (APX) activity decreased during the progression of growth in both shoots and roots, whereas peroxidase (POX) activity strongly increased in roots, reflecting a correlation between POX activity and the enhancement of growth. Catalase activity from shoots reached values nearly 3 or 4-fold higher than in roots. The monodehydroascorbate reductase (MDHAR) activity was higher in young seedlings than in more mature tissues, and in roots a decrease in MDHAR was noticed at the 11th day. No dehydroascorbate reductase (DHAR) was detected in roots from the pea plants and DHAR values detected in seedlings and in shoots were much lower than those of MDHAR. In shoots, GR decreased with the progression of growth, whereas in roots an increase was seen on the 9th and 11th days. Finally, superoxide dismutase (SOD) activity increased in shoots during the progression of growth, but specific SOD activity was higher in roots than in shoots.  相似文献   

9.
The main aim of the present study was to examine the role of selenium (Se) in ameliorating the toxic effect of cadmium (Cd) in mustard (Brassica juncea) plants. The plants exposed to elevated levels of Cd exhibited reduced biomass, pigment content, and relative water content (RWC). However, supplementation of Se restores the negative effect of Cd and increases biomass, pigment content, and RWC. Osmolyte (proline and glycine betaine) and sugar content were increased under Cd stress and further increase was observed with addition of Se. Cd decreased protein content and supplementation of Se increases it to appreciable levels. Cd also increased production of H2O2 and lipid peroxidation, electrolyte leakage, and the activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Supplementation of Se decreased accumulation of H2O2 and lipid peroxidation, increased the activities of antioxidant enzymes to greater levels, and regulates Cd accumulation in roots and shoots. Ascorbic acid (AsA) and flavonoids decreased with elevated concentrations of Cd; however, tocopherol and total phenols were increased with the same concentrations of Cd. Se application maintains AsA and flavonoid content, and further increase in tocopherol and total phenols were observed with Se in the present study. Overall the results confirm that exogenous application of Se mitigates the negative effects of Cd stress in mustard plants through the regulation of osmoprotectants, antioxidant enzymes, and secondary metabolites.  相似文献   

10.
In order to ultimately understand the whole plant mechanism of attaining desiccation tolerance, we undertook to investigate the root tissues of the resurrection plant Xerophyta viscosa, as previous work has only been conducted on the leaf tissues of resurrection plants. An aeroponic plant growth system was designed and optimised to observe the root’s response to desiccation without the restrictions of a soil medium, allowing easy access to roots. Successful culture of both X.viscosa and the control, Zea mays, was achieved and dehydration stress was implemented through reduction of nutrient solution spraying of the roots. After drying to the air dry state (achieved after 7 days for roots and 10 days for shoots), rehydration was achieved by resumption of root spraying. X.viscosa plants survived desiccation and recovered but Z. mays did not. The activity of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase and quantities of ascorbate and glutathione were determined during root desiccation. There was an initial decline in activity in all enzymes upon drying to 80% RWC, but activity thereafter remained constant, at rates indicative of potential metabolic activity, to the air-dry state. This data suggests that these enzymes are not denatured by desiccation of the root tissue. Ascorbate and glutathione content remained constant at concentrations of 70 and 100 μM, respectively during drying. Thus root tissues appear to retain antioxidant potential during drying, for use in recovery upon rehydration, as has been reported for leaf tissues of this and other resurrection plants.  相似文献   

11.
Analysis of the oxidative processes taking place during fruit ripening in a salad tomato variety (Lycopersicon esculentum Mill. cv. Ailsa Craig) revealed changes in oxidative and antioxidative parameters. Hydrogen peroxide content, lipid peroxidation and protein oxidation were measured as indices of oxidative processes and all were found to increase at the breaker stage. The levels of the aqueous-phase antioxidants, glutathione and ascorbate, increased during the ripening process and these increases were associated with significant changes in their redox status, becoming more reduced as ripening progressed. Changes in the activities of superoxide dismutase, catalase and the enzymes involved in the ascorbate-glutathione cycle during ripening indicated that the antioxidative system plays a fundamental role in the ripening of tomato fruits.  相似文献   

12.
In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles, the activity of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), and the ascorbate and glutathione contents were determined. In addition, the total superoxide dismutase (SOD) activity, the pattern of mitochondrial and peroxisomal NADPH-generating dehydrogenases, some of the peroxisomal photorespiratory enzymes, the glyoxylate cycle and oxidative metabolism enzymes were also analysed in these organelles. Results obtained on the metabolism of cell organelles indicate that nodulation with Rhizobium accelerates senescence in pea leaves. A considerable decrease of the ascorbate content of chloroplasts, mitochondria, and peroxisomes was found, and in these conditions a metabolic conversion of leaf peroxisomes into glyoxysomes, characteristic of leaf senescence, took place.  相似文献   

13.
This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.  相似文献   

14.
In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.  相似文献   

15.
Groundwater arsenic contamination, a grave threat in Bangladesh and parts of West Bengal (India), causes biochemical and physiological disorders in plants. Arsenic and phosphorus (plant macronutrient) have similar electronic configurations, resulting in their competitive interaction for the same uptake system in plant roots. Arsenic exposure initiates production of reactive oxygen species. Hence, the contents of proline, hydrogen peroxide, glutathione, ascorbate, and activities of ascorbate peroxidase, catalase were investigated in 21-day-old rice seedlings (cv. Khitish and cv. Nayanmani). Additionally, impact of arsenate together with phosphate on growth, total glutathione contents and activity of its regulatory enzymes were altered in the test cultivars to varying extents. Inductively coupled plasma-optical emission spectroscopic study of arsenic content in the root and shoot also showed variable uptake of arsenic by the two cultivars. Arsenate reductase enzyme activity primarily observed in the root, also differed from one cultivar to the other. Different phytochelatin (PCs) levels were recorded in the shoot and root of the cultivars under arsenate and phosphate treatment by reverse phase-high performance liquid chromatography. PC content increased with increasing arsenate concentrations, whereas phosphate and arsenate co-application resulted in reduced PC levels. The degree of elevation in PC contents varied significantly in the cultivars. Based on the above-mentioned parameters, cv. Khitish appeared to be more susceptible to arsenic toxicity than cv. Nayanmani which showed selective tolerance to the said metal stress.  相似文献   

16.
Brassica juncea L. eight-day-old seedlings treated with various concentrations (50–200 µM) of copper for 48 h accumulated Cu more in the roots than in leaves. Accumulation of copper resulted in more active lipid peroxidation and depletion of glutathione (GSH) pools in both roots and shoots, which was attributed to copper-induced additional oxidative stress. Activities of ascorbate peroxidase and superoxide dismutase were higher in both roots and shoots while catalase activity increased in leaves but remained unchanged in roots in response to copper accumulation. Changes in lipid peroxidation, GSH content, and antioxidant enzyme activities suggest that oxidative damage may be involved in copper toxicity.From Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 233–237.Original English Text Copyright © 2005 by Devi, Prasad.This article was submitted by the authors in English.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

17.
Thiol-peptides synthesized as intermediates in phytochelatin (PC) biosynthesis confer cellular tolerance to toxic elements like arsenic, mercury, and cadmium, but little is known about their long-distance transport between plant organs. A modified bacterial gamma-glutamylcysteine synthetase (ECS) gene, S1ptECS, was expressed in the shoots of the ECS-deficient, heavy-metal-sensitive cad2-1 mutant of Arabidopsis (Arabidopsis thaliana). S1ptECS directed strong ECS protein expression in the shoots, but no ECS was detected in the roots of transgenic plant lines. The S1ptECS gene restored full mercury tolerance and partial cadmium tolerance to the mutant and enhanced arsenate tolerance significantly beyond wild-type levels. After arsenic treatment, the root concentrations of gamma-glutamylcysteine (EC), PC2, and PC3 peptides in a S1ptECS-complemented cad2-1 line increased 6- to 100-fold over the mutant levels and were equivalent to wild-type concentrations. The shoot and root levels of glutathione were 2- to 5-fold above those in wild-type plants, with or without treatment with toxicants. Thus, EC and perhaps glutathione are efficiently transported from shoots to roots. The possibility that EC or other PC pathway intermediates may act as carriers for the long-distance phloem transport and subsequent redistribution of thiol-reactive toxins and nutrients in plants is discussed.  相似文献   

18.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

19.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

20.
The study highlights the role of sulfur (S) in detoxification of arsenate-induced toxicity and the shift in essential element homeostasis in Zea mays L (SRHM 445). Overall growth of arsenate-treated plants under sulfur starvation (?S) was lower than that in the presence of excess sulfur (+S). Translocation of arsenate from roots to shoots, increased under As(?S) and decreased with As(+S). The level of micronutrients (Cu, Zn, Fe) increased in As(?S) plants. Whereas, the level of K and PO4 was higher in As(?S) plants than in As(+S) plants. Higher malondialdehyde, protein carbonyl, and H2O2 levels in As(?S) plants are indicative of higher oxidative stress. Higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities, in As(?S) plants coincided with higher H2O2 levels showing the activity of these enzymes are independent of S availability. Absence of reduced glutathione/oxidized glutathione pool in (?S) plants manifested into failure of ascorbate–glutathione detoxification pathway. Hence, S has dual role of protecting the plant against arsenate-induced toxicity (1) by restricting arsenic (As) translocation to the upper parts and (2) by increasing the activity SOD and APX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号