首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Almond shoots produced by axillary branching from clone VII derived from a seedling of cultivar Boa Casta were evaluated for somaclonal variation using randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) analysis. To verify genetic stability we compared RAPD and ISSR patterns of plantlets obtained after 4 and 6 years of in vitro multiplication. A total of 64 RAPD and 10 ISSR primers gave 326 distinct and reproducible band classes, monomorphic across all 22 plantlets analysed. Thus, a total of 7,172 bands were generated, exhibiting homogeneous RAPD and ISSR patterns for the plantlets tested. These results suggest that the culture conditions used for axillary branching proliferation are appropriate for clonal propagation of almond clone VII, as they do not seem to interfere with the integrity of the regenerated plantlets. These results allowed us to establish the use of axillary branching plantlets (mother-plants) as internal controls for the analysis of somaclonal variation of shoots regenerated from other in vitro culture processes performed with clone VII (adventitious regeneration, regeneration from meristem culture, virus sanitation programs and genetic engineering).M. Martins and D. Sarmento contributed equally to this paper  相似文献   

2.
The nature of somaclonal variation at the nucleotide sequence level was studied in rice cv. Nipponbare. First, we investigated genomic variations by using 2 molecular marker systems: RAPD (random amplified polymorphic DNA) and ISSR (inter-simple sequence repeat). This was followed by sequencing of selected bands that represented genomic variations, and pairwise sequence analysis taking advantage of the whole genome sequence of rice. In addition, transpositional activity of the active MITE, mPing, was analysed by locus-specific PCR amplifications. The 2-year-old calli and their regenerated plants, analysed with 24 RAPD and 20 ISSR primers, showed moderate levels of genomic variation (20.83% and 17.04%, respectively). To test whether DNA methylation plays a role in somaclonal variation, the calli were treated with 5-azacytidine, a chemical agent that reduces cytosine methylation by blocking the activity of DNA methyltransferase. Though dwarfism occurred in regenerants from treated calli (a hallmark of the drug treatment), there was only a slight increase in the frequency of somaclonal variation detected in the treated calli and their regenerated plants relative to untreated controls. The transposon mPing also remained immobile in both treated and untreated calli. Nevertheless, dendrograms constructed according to the Jaccard coefficient calculated by UPGMA of the ISSR bands revealed that the 5-azacytidine-treated and untreated somaclones were grouped into 2 distinct clusters, suggesting a possible indirect effect of the treatment on the genomic changes, depending on the marker used. Sequence analysis indicated a low level of variation (0.31%), with single-base-pair substitutions predominating.  相似文献   

3.
Arachis pintoi accessions were used to study genetic diversity using RAPD markers. Concurrently, two tissue culture protocols were evaluated for organogenesis and the capacity to generate somaclonal variation. Data were collected on callus growth, callus weight gain, and number of regenerated plants. Robust RAPD profiles were obtained and eight primers amplified 100 different bands with 98% polymorphisms. The proportion of polymorphic RAPD loci was 89%. Average genetic distance was 0.36 and indicated that a large amount of genetic diversity exists within the germplasm evaluated. Genetic distances were used to prepare a dendogram for the A. pintoi accessions that separated them into four groups. A large degree of variability for callus induction and callus weight gain was observed among the accessions. Shoot regeneration was achieved for several accessions on both media with no structures indicative of somatic embryogenesis detected. Root induction was difficult to obtain, and many shoots died during this process. RAPD band profiles of regenerated tissue culture plants were similar to their parent plants, and therefore no somaclonal variation was evident using these methods.  相似文献   

4.
Agave americana L. callus were exposed to different concentrations of ethyl methanesulphonate (EMS) 0, 15, 30, 45 and 60 mM and to different times of exposure (2 and 4 h). The viability and capacity of shoot formation were shown to be affected when the callus were exposed to high concentrations (30–60 mM). Only the callus exposed to 15 mM EMS presented shoot formation; the exposure time of two hours produced the largest quantity of shoots regenerated per callus (21 shoots/callus). In order to generate somaclonal variants resistant to Fusarium oxysporum, a selection pressure was applied through of a culture filtrate (CF) of 100 ppm of the fungus. This was made in callus obtained in the treatment with 15 mM EMS during 2 h of exposure. The CF caused oxidation and necrosis in 71.25% of the callus; however, they were capable of generating shoots (3.5 shoots/callus). Molecular markers type RAPD, ISSR and DAMD were used to evaluate the genetic variation arising from the mutations caused by EMS on control plants and 16-month-old somaclonal variants. The polymorphic information content (PIC) for each one of the initiating groups was: 0.28 (DAMD), 0.09 (ISSR) and 0.14 (RAPD). DAMD revealed a greater percentage of polymorphism than RAPD and ISSR. Polymorphic bands were detected in the somaclonal variants. This indicated that the EMS caused genetic variation in the regenerated plants conferring resistance to them against Fusarium oxysporum.  相似文献   

5.
Jin S  Mushke R  Zhu H  Tu L  Lin Z  Zhang Y  Zhang X 《Plant cell reports》2008,27(8):1303-1316
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), chromosomal number counting, and flow cytometric analysis. The roles of RAPD and SSR markers in detecting somaclonal variation of cotton (Gossypium hirsutum L.) were evaluated. Two cluster analyses were performed to express, in the form of dendrograms, the relationships among the hormone combinations and the genetic variability. Both DNA-based techniques were able to amplify all of the cell clones and regenerated plantlets genomes and relative higher genetic variation could be detected in the culture type with 2, 4-D and kinetin hormone combination. The result suggested that 2, 4-D and kinetin hormone combination could induce relative high somaclonal variation and RAPD and SSR markers are useful in detecting somaclonal variation of regenerated cotton plants via somatic embryogenesis. Chromosome number counting and flow cytometry analysis revealed that the number of chromosomes and ploidy levels were nearly stable in all regenerated plants except two regenerated plantlets (lost 4 and 5 chromosomes, respectively) which meant that cytological changes were not correlated with the frequency of RAPD and SSR polymorphisms. This result also might mean that the cell lines with variation of chromosome numbers were difficult to regenerate plants.  相似文献   

6.
Somaclonal variation refers to the genetic and epigenetic changes in plants regenerated from plant tissue culture. In this study, using intersimple sequence repeat (ISSR) molecular markers, the somaclonal variation during micropropagation of sugarcane using temporary immersion bioreactors (TIBs) was evaluated. Apices of the cultivar Mex 69-290 were established and multiplied by ten subcultures in TIBs. After 30 d in each subculture, the number and length of shoots per explant were recorded. For the molecular analysis, ten plants were taken per subculture, and a total of 109 bands from ten ISSR primers were obtained. For each subculture, the polymorphism (%) was calculated. A dendrogram of genetic distances between subcultures and the donor plant was obtained using a matrix of Nei’s genetic distances and the unweighted pair group method with arithmetic mean (UPGMA). The results showed that the production of sugarcane shoots tends to increase until subculture 8, while shoot length decreases. ISSR markers showed the existence of somaclonal variation during micropropagation of sugarcane. The subcultures with the highest percentage of polymorphism (%) and genetic distances (GD) were the 1°, 9°, and 10° (with 10.1, 15.6, and 10.1% and 0.0222, 0.0181, and 0.0181 GD, respectively). The molecular and statistical analysis showed that in vitro establishment and the number of subcultures are both factors that affected the frequency of somaclonal variation during the micropropagation of sugarcane using TIBs. Thus, it is important to determine the optimal number of subcultures that can be made from an explant for each species to be micropropagated.  相似文献   

7.
Genetic stability and phytochemical analysis of in vitro established plants of Picrorhiza kurroa Royle ex Benth, have been carried out. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of tissue culture products including three adventitious shoots from three calli and 6 months old tissue culture raised plants growing in green house condition with mother plant. Apparent genetic variation was detected in the five types of plant materials. The percentage of polymorphic bands in the RAPD and ISSR analysis were 16.25 and 14.54 %, respectively. The genetic similarity was calculated on the basis of RAPD and ISSR data among the five types of plant materials and were ranged from 0.5 to 1.0 (mean 0.75) and 0.47 to 1.0 (mean 0.73), respectively. The similarity coefficient by both RAPD and ISSR analysis revealed that differences between tissue culture raised plants and mother plant was not remarkable, but notable differences were observed among three adventitious shoots regenerated from three calli. The phytochemical analysis of tissue culture raised products showed higher secondary metabolite (picrotin and picrotoxinin) content as compare to mother plant. The information gained on genetic stability/variability will be valuable for the large scale propagation and secondary metabolite production of P. kurroa.  相似文献   

8.
We report a high frequency regeneration protocol in cowpea (Vigna unguiculata Walp. var. C 152) via somatic embryogenesis from 10-d-old primary leaf explants. A study was conducted to examine the effect of somaclonal variations in in vitro derived cowpea plants under field conditions. The regenerated plantlets were successfully transferred to field after hardening in vitro and grown for collecting R0, R1 and R2 seeds. The seeds of R1 and R2 generations were subsequently, grown under field conditions and their various biometrical traits were compared and evaluated with non-tissue cultured cowpea plants as check. There was no detectable somaclonal variation induced in R0-R2 in any of the biometrical traits. The results indicate that the inclusion of different plant growth promoters at specified concentrations and duration in our earlier tissue culture work did not induce any detectable mutation. The RAPD analysis also shows that there is no genetic variation among R2 cowpea plants. The somatic embryogenesis protocol we report could thus be safely applied for high frequency true-to-type regeneration and transformations protocols without any somaclonal variation.  相似文献   

9.
Random amplified polymorphic DNA (RAPD) analysis using 10-mer oligonucleotide primers efficiently differentiated sugarcane cultivars and proved suitable for detecting gross genetic change such as that which can occur in sugarcane subjected to prolonged tissue culture, for example in protoplast-derived callus. However, RAPD analysis was not sufficiently sensitive to detect smaller genetic changes that occur during sugarcane genetic transformation. The length of DNA scored for polymorphism per primer averaged 13.2 kb, or 0.0001% of the typical sugarcane genome size of 1.2 × 107 kb (2C). RAPD analysis of sugarcane plants regenerated from embryogenic callus revealed very few polymorphisms, indicating that gross genetic change is infrequent during this tissue culture procedure, although epigenetic effects result in transient morphological changes in regenerated plants. More sensitive variations on the RAPD technique may increase the practicality of DNA-based screening of regenerated plant lines to reveal somaclonal variants.  相似文献   

10.
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars.  相似文献   

11.
Molecular markers provide facilities in order to study genetic diversity and relationship among genotypes. In this study, genetic diversity among 35 genotype of Brassica sp. (belonging B. napus, B. juncea, B. rapa, B. nigra) were determined using 13 ISSR, 3 IRAP markers and 18 REMAP (primer combinations of ISSR and retrotransposon primer). The percentage of polymorphism for ISSR, IRAP and REMAP was 96.38, 94 and 96%, respectively. By comparison between markers, ISSRs indicated the highest expected heterozygosity (He) and Shannon’s information index (I) with value of 0.34 and 0.51, respectively, while REMAP marker had by far the highest number of polymorphic bands (340) and marker index (7.1) among all fragments scored over all markers. In pattern of clustering based on Bayesian methods, K = 8 was resulted for combined data clustering that was more organized clustering for genotypes compared to others. This research suggests the combined data of ISSR, IRAP and REMAP markers are most reliable than each solely marker whilst have been clustered genotypes in their taxonomic classification of Brassica without any mixture. Principle coordinate analysis (PCoA) separated 35 genotypes in four groups which all of genotypes were clustered correctly based on their taxonomic classification. The findings of this study provide the valuable insight into the Brassica species relationships in terms of similarity among genotypes which can be helpful in breeding programs, and also demonstrate that retrotransposon markers are legible for genetic diversity and next genetic analysis in Brassica genus.  相似文献   

12.
To control the genetic quality during the whole process of tissue culture of the traditional Chinese medicinal plant, Saussurea involucrate Kar. et Kir., DNA polymorphisms and genetic variations were investigated using randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers. The genetic stability/variation in tissue-cultured products, including three calli, three adventitious shoots, regenerated plantlets and 2 year-old regenerated plantlets cultivated in the planting base in Tianshan Mountain, were assessed compared with 1 year-old and 2 year-old seedlings cultivated in the same planting base using aseptic seedlings as reference. Apparent genetic variation was detected in the 11 type of plant materials. The percentages of polymorphic bands in the RAPD and ISSR analysis were, respectively, 35% and 33%. Cluster analysis indicated that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 11 type of plant materials were respectively ranged from 0.823 to 0.995 with a mean of 0.878 and 0.825 to 0.974 with a mean of 0.885, which classified the samples into three groups. The similarity coefficient also revealed that differences among three calli were not remarkable by both RAPD and ISSR analysis, and only chemical components and growth properties needed consideration in the screening of callus used for the next redifferentiation studies. But there are remarkable differences among three adventitious shoots analyzed by ISSR markers. Therefore, RAPD and ISSR markers are efficient tools in genetic variation assessment and quality control in plant tissue culture process.  相似文献   

13.
Guo WL  Gong L  Ding ZF  Li YD  Li FX  Zhao SP  Liu B 《Plant cell reports》2006,25(9):896-906
Codonopsis lanceolata Benth. et Hook. f., commonly known as bonnet bellflower, is a high-valued herb medicine and vegetable. In this study, a large number of plants were regenerated via organogenesis from immature seed-derived calli in C. lanceolata by a simple and efficient method. Compared with the mother donor plant, the regenerated plants did not exhibit visible phenotypic variations in six major morphological traits examined at the stage of one-season-maturity under field conditions. To gain insight into the genomic stability of these regenerated plants, 63 individuals were randomly tagged among a population of more than 2,000 regenerants, and were compared with the single mother donor plant by two molecular markers, the inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD). Apparent genomic variation was detected in the 63 regenerants, whereas preexisting heterozygosiy in the donor plant was deemed minimal by testing 30 seedlings germinated from selfed seeds of the same donor plant. The percentages of polymorphic bands (PPB) in the ISSR and RAPD analysis were respectively 15.7 and 24.9% for the 63 regenerated plants. Cluster analysis indicates that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 64 plants (63 regenerated and one donor) were respectively 0.894 and 0.933, which allow classification of the plants into distinct groups. Nineteen randomly isolated bands underlying the changed RAPD or ISSR patterns were sequenced, and three of them showed significant homology to known-function genes. Detailed pairwise sequence comparison at one locus between the donor plant and a regenerant revealed that insertion of two short (24 and 19 bp) stretches of nucleotides in the regenerated plant relative to the donor plant occurred in an apparently stochastic manner.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
Tissue culture has been widely employed in Jatropha curcas L. for the clonal multiplication of superior genotypes. However, the evaluation of genetic stability is necessary to detect somaclonal variants. In this context, the present aim was to evaluate the genetic stability of J. curcas plantlets, obtained via indirect organogenesis, by means of ISSR markers. To supply the explant sources for in vitro propagation, the first generation of plants was produced from in vitro germination of J. curcas seeds. Fragments of cotyledonary leaves were inoculated into medium supplemented with 1.5 mg L?1 BAP and 0.05 mg L?1 of IBA for induction of callogenesis. The resulting calli were transferred to bud induction medium. Subsequently, the buds were cultured in medium for elongation, giving rise to the second generation of plants. These plants provided new buds, which were excised and subcultured in elongation medium, yielding a third generation of plants. To evaluate genetic stability in three plant generations, twelve ISSR primers were used, resulting in 124 bands showing 41.93 % of polymorphism. Increase was observed in the level of somaclonal variation (SV) over the generations. The present study reports, for the first time, the analysis of genetic stability in J. curcas plantlets regenerated via indirect organogenesis by means of ISSR markers. The results suggest that the indirect route is associated to higher levels of genetic instability, which also increased with successive subcultures. The ISSR markers were efficient in detecting SV, and the generated genetic variability may be useful for breeding programs.  相似文献   

15.
A simple tissue culture protocol was developed for efficient plant regeneration from young inflorescence-derived calli in wild barley, Hordeum brevisubulatum (Trin.) Link, an important pasturage grass. Genetic and epigenetic instabilities in the regenerated plants (regenerants) were assessed by three molecular markers AFLP, S-SAP and MSAP. Two pools of calli derived from young inflorescences of a single donor plant and 44 randomly chosen regenerants were subjected to AFLP analysis. Results showed that 74 out of 793 scored bands were polymorphic among the studied samples, giving rise to a genetic variation frequency of 9.3%. The number of variant bands as compared to the donor plant varied greatly among the regenerants, with a small number of regenerants accumulated a large number of variant bands (maximum 55), while the majority of regenerants showed only 2–3 variant bands. A subset of regenerants together with the two pools of calli were selected for S-SAP and MSAP analysis to detect possible retrotranspositional activity of a prominent retroelement family, BARE-1, in the genomes of Hordem species, and possible alterations in cytosine methylation. S-SAP analysis showed that of the 768 scored bands, 151 were polymorphic among the analyzed samples, giving rise to a genetic variation frequency of 19.7%, albeit no evidence for retrotranspositional event was obtained based on locus-specific PCR amplifications. MSAP analysis revealed that tissue culture has caused cytosine methylation alterations in both level and pattern compared with the donor plant. Sequencing of selected variant bands indicated that both protein-coding genes and transposon/retrotransposons were underlying the genetic and epigenetic variations. Correlation analysis of the genetic and epigenetic instabilities indicated that there existed a significant correlation between MSAP and S-SAP (r = 0.8118, 1,000 permutations, P < 0.05), whereas the correlation between MSAP and AFLP (r = 0.1048) is not statistically significant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Xiaoling Li and Xiaoming Yu contributed equally to this work.  相似文献   

16.
Somaclonal variation is a phenomenon that results in the phenotypic variation of plants regenerated from cell culture. One of the causes of somaclonal variation in rice is the transposition of retrotransposons. However, many aspects of the mechanisms that result in somaclonal variation remain undefined. To detect genome-wide changes in regenerated rice, we analyzed the whole-genome sequences of three plants independently regenerated from cultured cells originating from a single seed stock. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were detected in the genomes of the regenerated plants. The transposition of only Tos17 among 43 transposons examined was detected in the regenerated plants. Therefore, the SNPs and indels contribute to the somaclonal variation in regenerated rice in addition to the transposition of Tos17. The observed molecular spectrum was similar to that of the spontaneous mutations in Arabidopsis thaliana. However, the base change ratio was estimated to be 1.74 × 10(-6) base substitutions per site per regeneration, which is 248-fold greater than the spontaneous mutation rate of A. thaliana.  相似文献   

17.
The retrotransposon-based marker system, inter-retrotransposon amplified polymorphism (IRAP), and inter-simple sequence repeats (ISSRs) were used to detect somaclonal variation induced by tissue culture. IRAPs use a single primer designed to amplify out from the 5′ LTR sequence of the BARE-1 retrotransposon combined with a degenerate 3′ anchor, similar to that of ISSR primers. We analysed DNA polymorphisms in 147 primary regenerants and parental controls from three cultivars of barley (Hordeum vulgare). The ISSR marker system generated an average of 218 bands per primer, with 29 polymorphisms of which 12 were novel non-parental bands. In comparison, the IRAP system generated an average of 121 bands per primer, with 15 polymorphisms of which nine were novel non-parental bands. Polymorphism detected for IRAP and ISSR markers was more than twofold higher in Golden Promise than Mackay and Tallon cultivars. However, there was no significant difference in the frequency of novel non-parental bands. Cluster analysis revealed that the level of polymorphism and genetic variability detected was comparable between IRAP and ISSR markers. This suggests that retrotransposon-based marker systems, such as IRAP, based on retrotransposons such as BARE-1, are valuable tools for the detailed characterisation of mutation profiles that arise during tissue culture. Their use should improve our understanding of processes influencing mutation and somaclonal variation and allow for the design of methods that yield fewer genome changes in applications where maintaining clonal integrity is important.  相似文献   

18.
DNA variations of forty-eight Eucalyptus globulus plants, regenerated by successive culture from seven different explants were assessed by AFLP analysis using 18 primer combinations. At least one variation showed 66.7 % of the analyzed plants, and the numbers of polymorphic bands per plant ranged from 1 to 22. The proportion of polymorphic fragments did not correlate with the numbers of the regenerated plants. However, the more times of successive culture were done the more of polymorphic bands were found within the groups. On average, between 97.39 and 99.88 % of all fragments were shared within the same group. AMOVA analysis showed 39.33 % of the variation was found among the accessions that originated from different calli while 60.67 % was from same calli.  相似文献   

19.
Occurrence of genetic variants during micropropagation is occasionally encountered when the cultures are maintained in vitro for long period. Therefore, the micropropagated multiple shoots of Vanilla planifolia Andrews developed from axillary bud explants established 10 years ago were used to determine somaclonal variation using random amplified polymorphic DNA (RAPD) and intersimple sequence repeats markers (ISSR). One thousand micro-plants were established in soil of which 95 plantlets (consisting of four phenotypes) along with the mother plant were subjected to genetic analyses using RAPD and ISSR markers. Out of the 45 RAPD and 20 ISSR primers screened, 30 RAPD and 7 ISSR primers showed 317 clear, distinct and reproducible band classes resulting in a total of 30 115 bands. However, no difference was observed in banding patterns of any of the samples for a particular primer, indicating the absence of variation among the micropropagated plants. Our results allow us to conclude that the micropropagation protocol that we have used for in vitro proliferation of vanilla plantlets for the last 10 years might be applicable for the production of clonal plants over a considerable period of time.  相似文献   

20.
Summary In a micropropagation program, where it is of paramount importance to produce true-to-type planting material, somaclonal variation of any kind is undesirable. Variation among plants regenerated from tissue culture is termed ‘somaclonal variation’. In banana, somaclonal variants of different type have been reported with regard to plant morphology. This article discusses various factors due to which somaclonal variations may arise. Somaclonal variation may be detected by visual screening or by using molecular markers such as randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and by cytological studies. Although somaclonal variation is undesirable in the context of micropropagation, it can be used to advantage for genetic improvement of banana, as has been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号