首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Effects of various combinations of nutrient solution salinity (0.3, 171, and 342 mM NaCl), photosynthetically active radiation (PAR) of 600 or 1150 μmol/(m2 s), and type of nitrogen nutrition (amide-N or nitrate-N) on the productivity and the content of accumulated mineral nutrients and free amino acids were studied in Salicornia europaea plants. At PAR of 600 μmol/(m2 s), plant productivity increased with elevation of salinity level; at 1150 μmol/(m2 s), the maximum productivity was observed in the plants grown at 171 mM of NaCl. The content of free amino acids in shoots, regardless of PAR, decreased with growing salinity level, whereas Na content, on the opposite, increased. Glutamic acid, rather than proline, was shown to be the main organic osmolyte in this plant species. Comparison of the productivity of plants grown on solutions with amide (urea) or nitrate nitrogen showed that higher biomass accumulation was achieved in the former case.  相似文献   

2.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

3.
Two populations of a diatom alga Thallassiosira weisflogii were grown at photon flux densities (PFD) of 0.8 and 8 μmol/(m2 s). For both diatom populations, the recovery of chlorophyll fluorescence parameters (F 0, F m, F v/F m, and NPQ) was monitored after nondestructive irradiation by visible light at PFD of 40 μmol/(m2 s) and after high-intensity irradiation by visible light (1000–4000 μmol/(m2 s)). The exposure of diatoms to PFD of 40 μmol/(m2 s)—higher than PFD used for algal growth but still nondamaging to photosynthetic apparatus—induced nonphotochemical quenching (NPQ), which was stronger in algae grown at higher PFD (8 μmol/(m2 s)) than in algae grown at low light. After irradiation with high-intensity light, the recovery of chlorophyll fluorescence parameters was more pronounced in algae grown at elevated PFD level. During short-term irradiation of diatoms with high-intensity visible light (1000 μmol/(m2 s)), a stronger NPQ was observed in the culture adapted to high irradiance. After the treatment of algae with dithiothreitol (an inhibitor of carotenoid deepoxidase in the diadinoxanthin cycle) or NH4Cl (an agent abolishing the proton gradient at thylakoid membranes), a short exposure of algae to PFD of 40 μmol/(m2 s) induced hardly any nonphotochemical quenching. The results indicate the dominant contribution of xanthophyll cycle carotenoids to energy-dependent quenching.  相似文献   

4.
Comparative study was performed to assess the content and proportions of photosynthetic pigments and the violaxanthin cycle (VXC) activity in winter-green and summer-green leaves of bugleweed (Ajuga reptans L.) plants grown in shaded (photosynthetically active radiation, PAR 150 μmol/(m2 s)) and sunny (PAR 1200 μmol/(m2 s)) habitats in the Botanic Garden of Jagiellonian University (Krakow, Poland). In overwintered and newly formed leaves of shade plants, the content of green and yellow pigments was two times higher than in leaves of sun plants. The shade plants were distinguished by accumulation of β-carotene, while lutein was predominant in leaves of sun plants. Under the action of strong light (2000 μmol/(m2s)), the level of violaxanthin deepoxidation in winter-green leaves of shade and sun plants increased five- to sixfold, whereas it changed insignificantly in summer-green leaves of shade plants. It is concluded that, in a shadetolerant species A. reptans, the photosynthetic apparatus of winter-green leaves in sun and shade plants and of summer-green leaves in sun plants is protected against excess insolation by high activity of VXC. The carotenoids of summer-green leaves in shade plants are supposed to function mainly as light-harvesting pigments.  相似文献   

5.
Application of pulse-amplitude-modulation (PAM) fluorometers for measuring slow stages of chlorophyll fluorescence induction (CFI) is considered. With an example of Triticum aestuvum L. plants grown under continuous illumination at a photon flux density of 600 μmol/(m2 s) photosynthetically active radiation (PAR), the CFI curves were analyzed with leaves of various ages as a function of actinic light intensity. The fluorometer PAM-2100 was applied for measurements of CFI curves. The characteristic peaks of CFI curves in wheat leaves were most conspicuous and had the largest amplitudes at 600–800 μmol/(m2 s) PAR, which corresponds to the middle range of actinic light intensities employed in PAM-2100 fluorometers. In plants exposed to favorable and stressful conditions, the developmental stages may proceed at different rates; thus, the comparison of fluorescence parameters for leaves of equal calendar age but having different physiological states may provide ambiguous data. Therefore, the feasibility of recording CFI curves of different types is quite important for rapid diagnostics of the age and state of plant leaves, as well as for adequate physiological conclusions.  相似文献   

6.
Present study aims at estimation and validation of net primary productivity (NPP) using production efficiency model (PEM), and its possible relationship with tree diversity. The PEM estimates NPP, based on light use efficiency (LUE) and intercepted photosynthetically active radiation (IPAR). Weighted average LUE varied between 0.02 gC/μmol/m2 of PAR (Mixed forest (miscellaneous)) to 0.08 gC/μmol/m2 of PAR (Acacia forest), in growing phase (GP), and 0.0008 gC/μmol/m2 of PAR (Boswellia mixed forest) to 0.023 gC/μmol/m2 of PAR (Acacia forest) during the senescent phase (SP). The average weighted LUE for tropical dry and Moist deciduous forest (MDF) in GP were 0.05 gC/μmol/m2 of PAR and 0.03 gC/μmol/m2 of PAR, respectively. The average IPAR for different forest types was 2079.58 μmol/m2/s during GP and 1510.58 μmol/m2/s during SP. The PEM based NPP varied between 0.58–275.78 gC/m2/year during GP and 0.43–74.34 gC/m2/year during SP. The PEM based NPP and conventional (ground based) NPP were related with R 2 of 0.55. The tree diversity and NPP relationship was observed with R 2 of 0.55 at the level of both plot and forest types.  相似文献   

7.
Long-term (30 d) effects of 100, 200, 300, and 400 mM NaCl on photosystem 2 (PS 2)-mediated electron transport activity and content of D1 protein in the thylakoid membranes of chrysanthemum (Dendranthema grandiflorum) cultured in vitro at low irradiance 20 μmol(photon) m−2 s−1 were investigated. 100 mM NaCl increased contents of chlorophylls (Chl) a and b, carotenoids (Car; xanthophylls + carotenes), and the ratio of Chl a/b, and Car/Chl a+b. However, further increase in NaCl concentration led to the significant reduction in the contents of Chl a, and Chl b, and increase in the ratio of Chl a/b and Car/Chl a+b. NaCl treatment decreased the PS 2-mediated electron transport activity and contents of various thylakoid membrane polypeptides including D1 protein.  相似文献   

8.
When segments of rye leaves (Secale cereale L.) grown at 90 μmol m?2 s?1 PAR were incubated at a higher photon flux of 400–500 μ mol m?2 s?1 PAR in the presence of 0.2-0.6 M NaCl, a preferential loss of catalase activity was induced. The extent of this decline increased with the concentration of NaCl. In addition, the accumulation of alternative antioxidative components, such as ascorbate, glutathione, glutathione reductase, or peroxidase, was inhibited. The total content of H2O2 was, however, lower in catalase-depleted than in untreated control leaves. The occurrence of strong oxidative stress in NaCl-treated leaves was indicated by marked declines in the ratios of reduced to oxidized ascorbate and glutathione and by the degradation of chlorophyll in light. The specific elimination of catalase activity by the inhibitor aminotriazole was also accompanied by a rapid decline in the ratio of reduced to oxidized glutathione but other symptoms of oxidative stress were much less severe than in the presence of NaCl. However, all symptoms of photooxidative damage seen in NaCl-treated leaves were closely mimicked by treatment with the translation inhibitor, cycloheximlde, in light. The results suggest that NaCl-induced oxidative damage in light was predominantly mediated by the inhibition of protein synthesis. By this inhibition the resynthesis of catalase, which has a high turnover in light, was blocked and the leaves were thus depleted of catalase activity and, in addition, the intensification of alternative antioxidative systems was also prevented.  相似文献   

9.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

10.
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m−2 s−1) or FL (5–650 μmol m−2 s−1), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.  相似文献   

11.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m2 s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m2 s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass–fiber filters in the chlorophyll content range of 3–13 mg/L. Under stressful conditions, a 30–50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15–45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3–0.6; root mean square error (RMSE) = 0.03; r 2 = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0–45%; RMSE = 3.23 %; r 2 = 0.89) in the broad band 400–550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.  相似文献   

13.
The antioxidative defense mechanism to salinity was assessed by monitoring the activities of some antioxidative enzymes and levels of antioxidants in an obligate halophyte, Salicornia brachiata, subjected to varying levels of NaCl (0, 200, 400, and 600 mM) under hydroponic culture. In the shoots of S. brachiata, salt treatment preferentially enhanced the activities of ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of catalase (CAT) activity. Similarly, salinity caused an increase in total glutathione content (GSH + GSSG) and a decrease in total ascorbate content. Growth of S. brachiata was optimum at 200 mM NaCl and decreased with further increase in salinity. Salinity caused an increase in Na+ content and a decrease in K+ content of shoots. Proline levels did not change at low (0-200 mM NaCl) or moderate (400 mM NaCl) salinities, whereas a significant increase in proline level was observed at high salinity (600 mM NaCl). Accumulation of Na+ may have a certain role in osmotic homeostasis under low and moderate salinities in S. brachiata. Parameters of oxidative stress such as malondialdehyde (MDA), a product of lipid peroxidation, and H2O2 concentrations decreased at low salinity (200 mM NaCl) and increased at moderate (400 mM NaCl) and high salinities (600 mM NaCl). As a whole, our results suggest that the capacity to limit ionic and oxidative damage by the elevated levels of certain antioxidative enzymes and antioxidant molecules is important for salt tolerance of S. brachiata.  相似文献   

14.
We examined responses of batch cultures of the marine microalga Nannochloropsis sp. to combined alterations in salinity (13, 27, and 40 g/l NaCl) and light intensity (170 and 700 μmol photons/m2·s). Major growth parameters and lipid productivity (based on total fatty acid determination) were determined in nitrogen-replete and nitrogen-depleted cultures of an initial biomass of 0.8 and 1.4 g/l, respectively. On the nitrogen-replete medium, increases in light intensity and salinity increased the cellular content of dry weight and lipids due to enhanced formation of triacylglycerols (TAG). Maximum average productivity of ca. 410 mg TFA/l/d were obtained at 700 μmol photons/m2·s and 40 g/l NaCl within 7 days. Under stressful conditions, content of the major LC-PUFA, eicosapentaenoic acid (EPA), was significantly reduced while TAG reached 25% of biomass. In contrast, lower salinity tended to improve major growth parameters, consistent with less variation in EPA contents. Combined higher salinity and light intensity was detrimental to lipid productivity under nitrogen starvation; biomass TFA content, and lipid productivity amounted for only 33% of DW and ca. 200 mg TFA/l/day, respectively. The highest biomass TFA content (ca. 47% DW) and average lipid productivity of ca. 360 mg TFA/l/day were achieved at 13 g/l NaCl and 700 μmol photons/m2·s. Our data further support selecting Nannochloropsis as promising microalgae for biodiesel production. Moreover, appropriate cultivation regimes may render Nannochloropsis microalgae to produce simultaneously major valuable components, EPA, and TAG, while sustaining relatively high biomass growth rates.  相似文献   

15.
In this article we investigate the simultaneous influence of feeding time and amount of urea added as a nitrogen source on the fed‐batch growth and composition of Arthrospira (Spirulina) platensis. Cultivations were performed in 5‐L minitanks at constant temperature (25°C) and light intensity (42 μmol photons/m2s), using exponentially increasing rate of urea addition, and varying the above independent variables in the ranges 9–15 days and 4.6–12.1 mM, respectively. Special emphasis was placed on the content of added high value fatty acids (e.g., γ‐linolenic acid) of concern for the food industry. To this purpose, a 22‐plus star central composite design was employed, and maximum cell concentration, cell productivity, yield of biomass on nitrogen added, protein content and fatty acids profile were evaluated by multiple regression analysis. The highest cell concentration (1759 mg/L) was obtained at feeding time of 14 days and amount of urea per unit reactor volume of 5.8 mM, while the highest contents of γ‐linolenic acid (27.5% of the lipid fraction) and proteins (77.2%) were obtained at 10 and 14 days and 5.8 and 10.8 mM, respectively. The results confirm the possibility of using urea as cheap nitrogen source to culture this nutritionally valuable cyanobacterium.  相似文献   

16.
J. N. Wood  D. F. Gaff 《Oecologia》1989,78(4):559-564
Summary Dry matter productivity under saline conditions was compared in 5 desiccation-tolerant resurrection grasses and one desiccation sensitive species, all in the genus Sporobolus. S. stapfianus was the most salt tolerant, requiring 215 mole NaCl m-3 to reduce shoot dry matter increments to 50% of increments in plants not treated with salt. (This was comparable to published values for the salt tolerant grass Diplachne fusca.) S. lampranthus was salt sensitive, requiring 35 mol m-3 for 50% control yields. S. festivus, S. aff. Fimbriatus, and the deisccation sensitive S.pyramidalis was moderately tolerant (150–170 mol m-3). The moderate salt resistance of S. aff. fimbriatus was attributed mainly to exclusion of NaCl by roots. Salt export through leaf surfaces was a minor factor. Half of the leaf mesophyll cells survived 50 min immersion in 200 mol NaCl m-3. Plants of S. aff. fimbriatus and S. pyramidalis tolerated a broad range of soil pH. Plants of 4 desiccation tolerant Sporobolus species survived air-dryness following 3 weeks pretreatment with salinities up to 200 mol m-3  相似文献   

17.
The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 g cm-2 in untreated plants to 46.56 g cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.  相似文献   

18.
The net photosynthetic rate (F), transpiration rate (Q) and water use efficiency (F/Q) of oilseed rape (Brassica campestris L. cv. Span) was studied under a range of atmospheric conditions by gas exchange techniques. The plants were at the full bloom/pod initiation stage of development at the time of measurement. The environmental conditions consisted of various levels of photosynthetically active radiation (100 to 2800 (μmol m?2 s?1 PAK: 400–700 nm), air temperature (10 to 42°C) and vapour pressure deficit (0.7 to 2.1 kPa VPD). The peak values ofF were recorded at 1600 μmol m?2 s?1 PAR, 20°C air temperature and 1.2 kPa VPD of air in the chamber. Q increased with increasing PAR, air temperature and VPD. However, theF/Q remained high and almost constant from 600 to 1600 μmol m?2 s?1 PAR, but declined at the low and high photon flux densities.F/Q decreased progressively with increase in air temperature and VPD of air in the chamber.  相似文献   

19.
Resistance of fully imbibed tomato seeds to very high salinities   总被引:2,自引:0,他引:2  
Abstract Seeds of Lyeopersicon esculentum cv. VF36 (a salt-sensitive cultivar), L. esculentum var. Edkawi (which is fairly salt-resistant), and a wild relative, L. cheesmanii, were exposed to various concentrations of NaCl, up to 460 mol m?3, either directly or following imbibition in non-saline nutrient solution. After 10 d exposure to salt, they were transferred to non-saline solution. All taxa showed some germination at the lowest salinity tested, 92 mol m?3 NaCl, but virtually no germination occurred at 184 mol m?3 NaCl or higher salinities. Within 2 d after removal of the salt stress, however, the seeds of L. esculentum reached control levels of germination, even if they had already been on the verge of germination when the stress was imposed. The seeds of L. cheesmanii were less resistant to NaCl. The physiological basis for the resistance of VF36 seeds is discussed.  相似文献   

20.
Arne Jensen 《Plant Ecology》1985,61(1-3):231-240
Growth rate and salt accumulation were investigated in experiments on Halimione portulacoides with seven sodium chloride treatments, in water culture. The growth of Halimione was found to be stimulated by moderate, 85–170 mM NaCl, levels of salinity, but increasingly depressed by salinities from 410–690 mM NaCl, which is comparable to salinities in salt marshes during the growing season. Using the same technique, growth rate, chloride and nitrogen uptake experiments at four different sodium chloride and nitrate treatment levels were conducted, in order to study the effect of nitrogen and salt. At 8 mM NaCl in the growth medium growth was depressed at 16.2 mM nitrate treatment levels. At 137 mM, 410 mM and 684 mM of NaCl growth was stimulated by increasing levels of nitrogen. The results of these experiments are discussed in relation to the nitrogen and salt conditions prevailing in Halimione portulacoides salt-marsh communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号