首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This is the first study on the effect of stevioside, a diterpene glycoside that is a new promising plant growth regulator, on the antioxidant and photosynthetic systems of seedlings of the winter wheat cultivar Kazanskaya 560. Stevioside has been demonstrated to cause a decrease in the malondialdehyde formation rate, an increase in the activities of antioxidant enzymes (peroxidase and ascorbate peroxidase), and the accumulation of proline and carotenoids. Apparently, this integrated effect of stevioside can prevent oxidative stress caused by adverse environmental factors in plants.  相似文献   

2.
Order parameters of chloroplast membrane lipids of rye wheat seedlings differing in cold hardiness were compared before after hardening. Seedlings grown at 25° exhibited similar membrane microviscosities. When hardened, the cultivars most resistant to freezing temperatures possessed the most fluid membranes, while those sensitive to cold were unable to alter them. Changes in linolenic acid levels alone cannot be responsible for the observed phenomena.  相似文献   

3.
The effect of cadmium on growth parameters of seedlings of maize, rye and wheat as well as the role of phytochelatins in Cd detoxication in these species were studied. Cadmium was found to inhibit root growth and decrease fresh weight and water content in roots and shoots of the studied plants. Although a considerably lower Cd accumulation was shown in maize seedlings than in other species, they were characterized by the highest sensitivity to cadmium. Among γ-Glu-Cys peptides synthetized by plant species, phytochelatins — glutathione derivatives predominated. In maize they were synthetized in amounts sufficient for binding the total pool of the metal taken up, and the detoxication mechanism was localized in their roots. Larger amounts of cadmium were accumulated in roots of wheat and rye, but the quantity of the formed γ-Glu-Cys peptides seems insufficient for detoxication of the metal.  相似文献   

4.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

5.
This work presents findings, which indicate important role of fructose, fructose 6-phosphate (F6P), and fructose 1,6-bisphosphate (FBP) in preservation of homeostasis in plants under low temperature. Cold combined with light is known to incite increased generation of superoxide in chloroplasts leading to photoinhibition, but also an increased level of soluble sugars. In the present study, oxidative stress in pea leaves provoked by cold/light regime was asserted by the observed decrease of the level of oxidized form of PSI pigment P700 (P700(+)). Alongside, the increased antioxidative status and the accumulation of fructose were observed. The antioxidative properties of fructose and its phosphorylated forms were evaluated to appraise their potential protective role in plants exposed to chilling stress. Fructose, and particularly F6P and FBP exhibited high capacities for scavenging superoxide and showed to be involved in antioxidative protection in pea leaves. These results combined with previously established links implicate that the increase in level of fructose sugars through various pathways intercalated into physiological mechanisms of homeostasis represents important non-enzymatic antioxidative defense in plants under cold-related stress.  相似文献   

6.
The subcellular compartmentation of β -glucosidase was studied in rye, maize and wheat seedlings by immunocytochemical methods. For detection, we used a 10 nm gold-labeled secondary antibody, and results were observed using transmission electron microscopy. In all three species, β -glucosidase was found in plastids, cytoplasm and cell walls. In rye, gold particles were seen on cell walls and cytoplasm in epidermal cells of the root tip and shoot, in bundle sheath cells of the shoot and in all cells, except the vascular bundle cells of the coleoptile. Gold labeling was also observed in plastids of the bundle sheath cells of rye shoot tips and in cortical cells of root tips. In wheat, gold labeling was observed on cell walls and cytoplasm of epidermal cells in the shoot base and coleoptile, and on cell walls and plastids in epidermal cells of the root tip. In maize, gold labeling was mainly found in plastids or proplastids in vascular bundle cells and bundle sheath cells of the shoot, in bundle sheath cells of the coleoptile and in epidermal cells of the root. Some gold particles were also found in cell walls and cytoplasm of stomatal guard cells of the shoot base and vascular bundle cells of the shoot tip and in the cell walls of bundle sheath cells of the shoot tip and root tip epidermal cells. Results are discussed in relation to the role of β -glucosidase in hydroxamic acid release and overall defense mechanism of monocotyledons.  相似文献   

7.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

8.
Two clonal nerve-like cell lines derived from HT22 and PC12 have been selected for resistance to glutamate toxicity and amyloid toxicity, respectively. In the following experiments it was asked if these cell lines show cross-resistance toward amyloid beta peptide (Abeta) and glutamate as well as toward a variety of additional neurotoxins. Conversely, it was determined if inhibitors of oxytosis, a well-defined oxidative stress pathway, also protect cells from the neurotoxins. It is shown that both glutamate and amyloid resistant cells are cross resistant to most of the other toxins or toxic conditions, while inhibitors of oxytosis protect from glutathione and cystine depletion and H2O2 toxicity, but not from the toxic effects of nitric oxide, rotenone, arsenite or cisplatin. It is concluded that while there is a great deal of cross-resistance to neurotoxins, the components of the cell death pathway which has been defined for oxytosis are not used by many of the neurotoxins.  相似文献   

9.
The effect of hypothermia on the content of 310 kD stress protein in seedlings of winter rye and wheat was studied by rocket-immunoelectrophoresis and radioactive label. The 1-h low-temperature stress was found to result in an increase in the content of this protein at both above- and below-zero temperatures. It was found that the increase in the relative content of the protein with mol. wt 310 kD, under the effect of short-term low-temperature stress, occurs due to induction of its synthesis. It has been found that during cold hardening of winter wheat the content of this protein decreases up to 64% compared to the control during the first day of hardening but starts to rise by the third day and reaches 179% by the seventh day, which is well correlated with the increase in cold resistance of winter wheat plants during cold hardening.  相似文献   

10.
This work was undertaken to determine the kinds and amount of substances that would account for the previously demonstrated differential growth of Claviceps purpurea on guttation fluids from Rosen rye, Genesee wheat, and Traill barley seedlings. Chromatographic methods were used for determining amino acids and sugars, spot tests and spectrometric methods for inorganic materials, and microbiological methods for vitamins.

Total sugar content is about equal in rye and barley fluids, but lower in wheat. Glucose is the principal sugar component of the rye and barley fluids and galactose highest in wheat. Most of the amino acid in all 3 fluids is aspartic acid or asparagine. Barley fluid is far higher than the other 2 in total amino acids, with wheat the lowest. Most inorganic elements are found to be highest in barley and lowest in wheat, with the exception of iron where rye is highest and barley lowest. Barley fluid is highest in choline, p-aminobenzoic acid, thiamine, and uracil, while rye is highest in inositol and pyridoxine. Wheat is much lower than the other 2 in choline and inositol.

  相似文献   

11.
Enterococci are important food-borne pathogens that cause serious infections. Several virulence factors have been described including aggregation substance, gelatinase, cytolysin, and enterococcal surface protein. The ability to cause infections is mainly dependent on the response to oxidative stress due to the production of reactive oxygen species by immune cells. The aim of our study was to analyze the resistance of enterococcal strains from food to clinically relevant antiseptic agents with regard to the presence of selected virulence factors, and to uncover potential mechanisms of the antioxidative resistance. Eighty-two enterococcal isolates from Bryndza cheese were tested using in vitro growth assays to study the ability of these isolates to survive exposure to antiseptic agents — hydrogen peroxide, hypochlorite, and Chlorhexidine. Virulence genotypes of the isolates were determined by PCR, and RT real time PCR was used for gene expression under oxidative stress. Resistance against antiseptic agents depends on the concentration of applied chemicals, on the time of exposure, but also on virulence factors of the enterococcal strains. Oxidative stress induces the expression of antioxidative enzymes and down-regulates the expression of prooxidative enzymes. These effects are dependent on the virulence genotype of the enterococcal strains. These findings are important for future research, especially concerning the role of enterococci in oral diseases.  相似文献   

12.
Winter wheat ( Triticum aestivum L. cv. Fredrick) seedlings (seed) treated with different concentrations of uniconazole (S-3307) were water stressed by withholding water for 2, 4 and 6 days. Subsequently, the water-stressed seedlings were exposed to heat shock at 45°C for 3 h. Chlorophyll fluorescence, stress-ethylene and percentage survival were the parameters used to monitor the efficacy of protection against thermal stress by uniconazole. In the control seedlings, water stress for 2 days prior to heat shock provided minimal protection, whereas uniconazole protected both water-stressed and non-stressed seedlings from heat injury. However, the degree of protection by uniconazole was enhanced if the seedlings were subjected to water stress (2–4 days) prior to the heat shock. In addition to protection against heat injury, uniconazole also reduced stress-induced (water and heat) ethytene levels.  相似文献   

13.
12 d龄的春小麦幼苗在 1 mmol· L- 1及 1 0 mmol· L- 1H2 O2 的胁迫锻炼过程中 ,质膜透性增大 ,O- · 及 H2 O2 含量增多 ,CAT活性升高 ,叶绿素含量降低 ,低浓度 H2 O2 胁迫使SOD活性上升 ,高浓度时却使其活性下降。经过 H2 O2 胁迫锻炼后的小麦遭受干旱胁迫时 ,叶绿素含量、SOD活性、CAT活性均高于对照组 ,而质膜透性、O- · 及 H2 O2 含量却低于对照组。表明 H2 O2 胁迫锻炼 ,提高了小麦幼苗的抗氧化能力 ,增强了其抗旱性  相似文献   

14.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15-60 min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1 h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

15.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15–60?min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1?h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

16.
Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.  相似文献   

17.
The localization of β -glucosidase was determined at the tissue level in roots and shoots of rye, wheat and maize seedlings, using an immunohistochemical approach with antibodies directed against purified maize β -glucosidase as the primary antibody. In the roots, the β -glucosidase was found in the epidermis and the underlying cell layer. In the leaves, staining was seen in the epidermis (rye and wheat) and nearby vascular tissue (rye, wheat and maize). In all 3 species, β -glucosidase activity was highest in the coleoptile. Here the enzyme was restricted to the epidermis in wheat and to cells near the vascular tissue in maize, but was found in the whole tissue, except the vascular tissue, in rye. Maize, wheat and rye all contain hydroxamic acid glucosides and results are discussed in relation to a proposed role of β -glucosidase as part of a defense system releasing hydroxamic acid aglucone upon herbivore attack, pathogen penetration or aphid infestation.  相似文献   

18.
干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响   总被引:24,自引:1,他引:24  
采用水培试验方法,以2个耐旱性不同的小麦品种(敏感型望水白和耐旱型洛旱7号)为材料,研究了干旱胁迫对小麦幼苗根系形态、生理特性以及叶片光合作用的影响,以期揭示小麦幼苗对干旱胁迫的适应机制.结果表明: 干旱胁迫下,2个小麦品种幼苗的根系活力显著增大,而根数和根系表面积受到抑制;干旱胁迫降低了望水白的叶片相对含水量,提高了束缚水/自由水,而对洛旱7号无显著影响;干旱胁迫降低了2个小麦品种叶片的叶绿素含量、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度,但随胁迫时间的延长,洛旱7号的叶绿素含量和净光合速率与对照差异不显著;干旱胁迫降低了2个小麦品种幼苗的单株叶面积,以及望水白的根系、地上部和植株生物量,而对洛旱7号无显著影响.水分胁迫下,耐旱型品种可以通过提高根系活力、保持较高的根系生长量来补偿根系吸收面积的下降,保持较高的根系吸水能力,进而维持较高的光合面积和光合速率,缓解干旱对生长的抑制.  相似文献   

19.
Occurrence, synthesis and localization of lectins in coleoptiles of 3-day old seedlings of wheat, rye, barley and rice were studied by a combination of high resolution ion-exchange chromatography, in vivo labelling with 35S-cysteine and immunocytochemistry. Whereas no lectin can be isolated or localized in barley coleoptile, 1.9 and 40 ng of lectin per coleoptile was obtained from wheat and rye respectively. Wheat germ agglutinin was localized in the outer layer of the wheat coleoptile and both inner and outer layers of rye coleoptile displayed a specific reaction. In rice, 250 ng of lectin is present in the coleoptile and is distributed throughout this organ. Wheat coleoptiles synthesize no lectin and rye coleoptiles synthesize minute amounts while those from developing rice seedlings incorporate reasonable amounts of 35S-cysteine into lectin.Abbreviations FPLC Fast Protein Liquid Chromatography - GlcNAc N-acetylglucosamine - PBS phosphate buffered saline - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

20.
The effects of aluminium (Al) ions on the metabolism of root apical meristems were examined in 4-day-old seedlings of two cereals which differed in their tolerance to Al: wheat cv. Grana (Al-sensitive) and rye cv. Dakowskie Nowe (Al tolerant). During a 24 h incubation period in nutrient solutions containing 0.15 mM and 1.0 mM of Al for wheat and rye, respectively, the activity of first two enzymes in the pentose phosphate pathway (G-6-PDH and 6-PGDH) decreased in the sensitive cultivar. In the tolerant cultivar activities of these enzymes increased initially, then decreased slightly, and were at control levels after 24 h. In the Al-sensitive wheat cultivar a 50% reduction in the activity of 6-phosphogluconate dehydrogenase was observed in the presence of Al. Changes in enzyme activity were accompanied by changes in levels of G-6-P- the initial substrate in the pentose phosphate pathway. When wheat was exposed for 16 h to a nutrient solution containing aluminium, a 90% reduction in G-6-P concentration was observed. In the Al-tolerant rye cultivar, an increase and subsequently a slight decrease in G-6-P concentration was detected, and after 16 h of Al-stress the concentration of this substrate was still higher than in control plants. This dramatic Al-induced decrease in G-6-P concentration in the Al-sensitive wheat cultivar was associated with a decrease in both the concentration of glucose in the root tips as well as the activity of hexokinase, an enzyme which is responsible for phosphorylation of glucose to G-6-P. However, in the Al-tolerant rye cultivar, the activity of this enzyme remained at the level of control plants during Al-treatment, and the decrease in the concentration of glucose occurred at a much slower rate than in wheat. These results suggest that aluminium ions change cellular metabolism of both wheat and rye root tips. In the Al-sensitive wheat cultivar, irreversible disturbances induced by low doses of Al in the nutrient solution appear very quickly, whereas in the Al-tolerant rye cultivar, cellular metabolism, even under severe stress conditions, is maintained for a long time at a level which allows for root elongation to continue.Abbreviations G-6-PDH glucose-6-phosphate dehydrogenase - 6-PGDH 6-phosphogluconate dehydrogenase - G-6-P glucose-6-phosphate - TEA triethanolamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号