首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
de Lima TM  de Sa Lima L  Scavone C  Curi R 《FEBS letters》2006,580(13):3287-3295
Modulation of macrophage functions by fatty acids (FA) has been studied by several groups, but the effect of FA on nitric oxide production by macrophages has been poorly examined. In the present study the effect of palmitic, stearic, oleic, linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids on NF-kappaB activity and NO production in J774 cells (a murine macrophage cell line) was investigated. All FA tested stimulated NO production at low doses (1-10 microM) and inhibited it at high doses (50-200 microM). An increase of iNOS expression and activity in J774 cells treated with a low concentration of FA (5 microM) was observed. The activity of NF-kappaB was time-dependently enhanced by the FA treatment. The inhibitory effect of FA on NO production may be due to their cytotoxicity, as observed by loss of membrane integrity and/or increase of DNA fragmentation in cells treated for 48 h with high concentrations. The results indicate that, at low concentrations FA increase NO production by J774 cells, whereas at high concentrations they cause cell death.  相似文献   

2.
In order to validate the use of Crescentia alata (Bignoniaceae) in the traditional medicine of Guatemala as an antiinflammatory remedy, the methanolic (MeOH) extract has been evaluated in vivo for antiinflammatory activity on carrageenin paw edema in rats and in vitro on Escherichia coli lipopolysaccharide- (LPS)-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in J774.A1 macrophage cell line. This extract exerted in vivo a significant anti-inflammatory activity at the highest dose tested. The same extract showed in vitro an inhibitory activity on inducible nitric oxide synthase expression and on NO formation in LPS-primed J774.A1 cells. Subsequent fractionation and analysis of the extract has led to the isolation and characterization as major constituents of two flavonol glycosides: quercetin 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside (rutin) 1, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside (kaempferol 3-O-rutinoside) 2, and flavonol aglycone, kaempferol 3. Their structures were elucidated by spectral methods. The bioassay-directed analysis of flavonols 1-3 indicated that kaempferol (3) was the most active compound contained in the MeOH extract because it reduced in vitro both NO production and iNOS expression in LPS-primed J774.A1 cells, whereas rutin (1) and kaempferol 3-O-rutinoside (2) showed no significant activity. The MeOH extract and all of flavonoids tested did not show in vitro significant cytotoxic effect in J774.A1 macrophage cell line.  相似文献   

3.
Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages.   总被引:36,自引:0,他引:36  
The effect of glucocorticoids on the production of NO2- and NO by the macrophage cell line J774 was investigated. Stimulation of the cells with lipopolysaccharide (LPS) resulted in a time-dependent accumulation of NO2- in the medium, reaching a plateau after 48h. Concomitant incubation of the cells for 24h with dexamethasone (0.001-1.0 microM) or hydrocortisone (0.01-10.0 microM) caused a concentration-dependent inhibition of NO2- formation. The cytosol of J774 cells stimulated with LPS and IFN-gamma produced a time-dependent increase in the release of NO. This was blocked in a concentration-dependent manner by dexamethasone and hydrocortisone, but not progesterone, administered concomitantly with the immunological stimulus. None of these compounds had any effect on the release of NO once the enzyme had been induced. The inhibitory effect of hydrocortisone on NO formation was blocked by cortexolone. These data suggest that part of the anti-inflammatory and immunosuppressive actions of glucocorticoids is due to their inhibition of the induction of the NO synthase.  相似文献   

4.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be involved in the pathology of smoke angiopathy through the NO-induced apoptosis of endothelial cells.  相似文献   

5.
Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor G?6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.  相似文献   

6.
Abstract The growth of Mycobacterium microti was inhibited within J774A. 1 macrophage cells activated with either interferon-γ or tumor necrosis factor-α. Activation with interferon-γ or tumor necrosis factor-α alone did not stimulate the production of nitrite in J774A. 1 cells. Interferon-γ but not tumor necrosis factor-a increased the production of hydrogen peroxide in a concentration dependent manner but scavengers of reactive oxygen species did not influence the growth inhibiting effect of interferon-γ within J774A.1 cells. Both interferon-γ and tumor necrosis factor-α enhanced the fusion of M. microti containing phagosomes with lysosomes and the ultimate degradation of bacteria. Our results showed that growth inhibition of M. microti within interferon-γ or tumor necrosis factor-a stimulated J774A. 1 cells was independent of reactive oxygen intermediate and reactive nitrogen intermediate production.  相似文献   

7.
Mercury is well known to adversely affect the immune system; however, little is known regarding its molecular mechanisms. Macrophages are major producers of nitric oxide (NO) and this signaling molecule is important in the regulation of immune responses. The present study was designed to determine the impact of mercury on NO and cytokine production and to investigate the signaling pathways involved. The murine macrophage cell line J774A.1 was used to study the effects of low-dose inorganic mercury on the production of NO and proinflammatory cytokines. Cells were treated with mercury in the presence or absence of lipopolysaccharide (LPS). Mercury (5-20 microM) dose-dependently decreased the production of NO in LPS-stimulated cells. Concomitant decreases in the expression of inducible nitric oxide synthase (iNOS) mRNA and protein were detected. Treatment of J774A.1 cells with mercury alone did not affect the production of NO nor the expression of iNOS mRNA or protein. Interestingly, mercury alone stimulated the expression of tumor necrosis factor alpha (TNFalpha), and increased LPS-induced TNFalpha and interleukin-6 mRNA expression. Mercury inhibited LPS-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) but had no effect alone. In contrast, mercury activated p38 mitogen-activated protein kinase (p38 MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. These results indicate that mercury suppresses NO synthesis by inhibition of the NF-kappaB pathway and modulates cytokine expression by p38 MAPK activation in J774A.1 macrophage cells.  相似文献   

8.
Orthovanadate is an agent known to stimulate cell growth and mimic insulin action. The effects of this compound on phosphoinositides in NIH 3T3 cells were examined. Both 100 and 1000 microM orthovanadate were found to increase the cellular content of inositol phosphate secondary to the activation of phosphatidylinositol-specific phospholipase C (PtdIns-PLC). The time course, dependence on orthovanadate concentration, and sensitivity to the isoflavone genistein were similar for orthovanadate-induced accumulation of inositol phosphate and protein tyrosine phosphate, indicating that there is a correlation between cellular protein tyrosine phosphate levels and PtdIns-PLC activity. Increased phosphatidylinositol phosphate (PtdInsP) content also occurred when cells were incubated with orthovanadate and appeared to result from the activation of PtdIns kinase. This effect was not correlated with cellular protein tyrosine phosphate content. Hence, orthovanadate is shown to affect phosphoinositide metabolism at a minimum of two sites by both tyrosine phosphate-dependent and -independent mechanisms.  相似文献   

9.
方芳  戴传超  王宇 《生物工程学报》2009,25(10):1490-1496
一株属于小克银汉霉属(Cunninghamellasp.)的内生真菌(编号为AL4)制成的粗诱导子可以诱发茅苍术悬浮细胞产生多种防卫反应,包括一氧化氮(NO)、过氧化氢(H2O2)迸发和挥发油合成加强。NO专一性淬灭剂cPTIO和H2O2淬灭剂过氧化氢酶(CAT)则不仅可以分别抑制AL4粗诱导子引起的茅苍术细胞的NO和H2O2迸发,还都能部分阻断AL4粗诱导子促进茅苍术细胞挥发油合成。添加NO供体硝普钠(SNP)和H2O2都可引起茅苍术细胞中挥发油积累增加,但二者效果不同。因此暗示着NO和H2O2都是介导内生真菌AL4粗诱导子促进茅苍术悬浮细胞挥发油合成的信号分子。同时添加NO的淬灭剂cPTIO和H2O2的淬灭剂CAT并不能完全抑制AL4粗诱导子引起的茅苍术细胞挥发油积累增加,这表明内生真菌AL4粗诱导子还可以通过其他方式促进茅苍术悬浮细胞挥发油合成。  相似文献   

10.
Zhang A  Jiang M  Zhang J  Ding H  Xu S  Hu X  Tan M 《The New phytologist》2007,175(1):36-50
* The role of nitric oxide (NO) and the relationship between NO, hydrogen peroxide (H(2)O(2)) and mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Both ABA and H(2)O(2) induced increases in the generation of NO in mesophyll cells of maize leaves, and H(2)O(2) was required for the ABA-induced generation of NO. Pretreatment with NO scavenger and nitric oxide synthase (NOS) inhibitor substantially reduced the ABA-induced production of NO, and partly blocked the activation of a 46 kDa MAPK and the expression and the activities of several antioxidant enzymes induced by ABA. Treatment with the NO donor sodium nitroprusside (SNP) also induced the activation of the MAPK, and enhanced the antioxidant defense systems. * Conversely, SNP treatment did not induce the production of H(2)O(2), and pretreatments with NO scavenger and NOS inhibitor did not affect ABA-induced H(2)O(2) production. * Our results suggest that ABA-induced H(2)O(2) production mediates NO generation, which, in turn, activates MAPK and results in the upregulation in the expression and the activities of antioxidant enzymes in ABA signaling.  相似文献   

11.
12.
In the present study, we investigated the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on tissue injury or cytotoxicity caused by endotoxin challenge by assaying lactate dehydrogenase (LDH) isozymes and cell viability in J774A.1 cells. In mice treated with L-NAME (10 mg kg(-1), i.v.), the activity of LDH in serum 18 h after endotoxin (6 mg kg(-1), i.p.) injection was not significantly different from that in mice treated with endotoxin alone. Mice injected with endotoxin exhibited leakage of LDH isozymes 3 and 5, but L-NAME did not protect against endotoxin-induced acute leakage of LDH isozymes. Treatment with L-NAME (10-1000 microM) significantly inhibited NO generation by endotoxin (1 microg ml(-1))-activated J774A.1 cells. However, L-NAME (10-1000 microM) did not affect endotoxin-induced cytotoxicity in J774A.1 cells. These findings suggested that endotoxin-induced NO formation may not contribute to tissue injury or cytotoxicity caused by endotoxin.  相似文献   

13.
Prostaglandin E2 (PGE2) is the major cyclooxygenase metabolite in macrophages with complex proinflammatory and immunoregulatory properties. In the present study, we have compared the modulatory role of PGE2/cAMP-dependent signaling on induced nitric oxide (NO) production in two murine macrophages, J774 and RAW 264.7. With no effect on NO release by itself, PGE2 co-addition with lipopolysaccharide (LPS) resulted in a concentration-dependent enhancement in NO release and inducible NO synthase induction in J774, but not in RAW 264.7, macrophages. The potentiation effect of PGE2 in J774 cells was still seen when applied within 9 h after LPS treatment. Whereas RAW 264.7 macrophages release PGE2 with greater extent than J774 macrophages in response to LPS, indomethacin and NS-398, upon abolishing LPS-induced PGE2 release, caused a more obvious inhibition of NO release from J774 than RAW 264.7 cells. Thus, we suggest a higher positive modulatory role of PGE2--either endogenous or exogenous--on NO formation in J774 cells. Supporting these findings, exogenous PGE2 triggers cAMP formation in J774 cells with higher potency and efficacy. Of interest, dBcAMP also elicits higher sensitivity in potentiating NO release in J774 cells. We conclude that the opposite effect of PGE2/cAMP signaling on macrophage NO induction depends on its signaling efficacy and might be associated with the difference in endogenous PGE2 levels.  相似文献   

14.
A comparative study was done using J774A.1 and J774A. 1-derived transfected cells (J774A.1 C.1) containing antisense tumor necrosis factor α (TNF-α) plasmid to determine the role of endogenous TNF-α on nitric oxide production as well as on the growth ofMycobacterium microti in interferon γ (IFN-γ)- and lipopolysaccharide (LPS)-treated cells. On stimulation with IFN-γ and LPS a higher level of NO was observed in J774A.1 cells compared to J774A.1 C.1 which indicated that endogenous TNF-α is required for the production of NO. Comparing the effect of IFN-γ and LPS on the intracellular growth ofM. microti, the growth-reducing activity was higher in J774A.1 cells than in J774A.1 C.1 cells and was not completely abrogated in the presence of the nitric oxide inhibitorN G-methyl-l-arginine (l-NMA). J774A.1 C.1 cells infected withM. microti produced a significant amount of NO when exogenous TNF-α was added along with IFN-γ and LPS and the concentration of intracellular bacteria decreased almost to that in IFN-γ and LPS treated parental J774A.1 cells. Addition of exogenous TNF-α even in the presence ofl-NMA in J774.1 C.1 cells could also partially restore intracellular growth inhibition ofM. microti caused by IFN-γ and LPS. TNF-α is probably required for the production of NO in J774A.1 cells by IFN-γ and LPS but TNF-α and NO are independently involved in the killing of intracellularM. microti with IFN-γ and LPS.  相似文献   

15.
Nitric oxide (NO) is an important regulator of immune responses. Effects of cytokines, such as tumor necrosis factor (TNF)-alpha or IFN-gamma, and bacterial products, such as lipopolysaccharide, on macrophage NO production have been well documented; however, the role of the extracellular matrix proteins, including collagen, in this process remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, was expressed in human macrophages, and its activation facilitated their differentiation as well as cytokine/chemokine production. Here, we examined the role for DDR1 in collagen-induced NO production using the murine macrophage cell line J774 cells that endogenously express DDR1. Activation of J774 cells with collagen induced the expression of inducible NO synthase (iNOS) and NO production. Inhibition of DDR1, but not beta1-integrins, abolished collagen-induced iNOS and NO production. Activation of J774 cells with collagen-activated nuclear factor-kappaB, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) and a pharmacological inhibitor of each signaling molecule significantly reduced collagen-induced NO production. Thus, we have demonstrated, for the first time, that the interaction of DDR1 with collagen induces iNOS expression and subsequent NO synthesis in J774 cells through activation of NF-kappaB, p38 MAPK, and JNK and suggest that intervention of DDR1 signaling in macrophages may be useful in controlling inflammatory diseases in which NO plays a critical role.  相似文献   

16.
17.
Collagenase production by chondrocytes appears to play a major role in the development of osteoarthritis. Although the mechanisms regulating collagenase production by chondrocytes are not known, incubation of bovine chondrocytes in serum markedly decreases collagenase production. Since serum has been demonstrated to increase levels of phosphotyrosine (P-Tyr) in several cell types, we determined the effect of altering intracellular levels of P-Tyr on collagenase production. Both orthovanadate, a potent inhibitor of tyrosine phosphatases, and serum caused a marked increase in tyrosine phosphorylation. The increase in P-Tyr was associated with a decrease in the production of collagenase, suggesting that two processes may be linked. Orthovanadate caused an increase in P-Tyr in the absence of serum, suggesting that P-Tyr levels in resting chondrocytes are regulated through activity of both tyrosine kinases and phosphatases. Orthovanadate and serum induced a synergistic increase in P-Tyr levels, suggesting that serum functions through increasing kinase activity rather than decreasing phosphatase activity. In the absence of serum, concentrations of orthovanadate which maximally inhibited collagenase production primarily increased phosphorylation of a 36 kDa protein, suggesting that the phosphorylation of this protein may play a major role in regulating collagenase production. Orthovanadate had limited effects on chondrocyte proteoglycan synthesis, morphology or viability in the presence or absence of serum, suggesting that the decrease in collagenase production was not due to non-specific inhibition of protein synthesis or cellular toxicity. Inhibition of tyrosine phosphatases by orthovanadate or activation of tyrosine kinases by addition of serum correlated with the inhibition of collagenase production.  相似文献   

18.
The objective of the current study was to investigate the ability of orthovanadate to induce aneuploidy in mouse sperm and micronuclei in mouse bone marrow cells at the same dose levels. The BrdU-incorporation assay was performed to test if the chemical treatment altered the duration of the meiotic divisions. It was found that orthovanadate (25mg/kg bw) treatment did not cause meiotic delay. To determine the frequencies of hyperhaploid and diploid sperm, male mice were treated by intraperitoneal (i.p.) injection with 5, 15 or 25mg/kg bw orthovanadate and sperm were sampled from the Caudae epididymes 22 days later. Fluorescence in situ hybridization (FISH) was performed with DNA-probes for chromosomes 8, X or Y. Significant increases in the frequencies of total hyperhaploid sperm (p<0.01) were found with 15 and 25mg/kg bw orthovanadate, indicating induced non-disjunction during male meiosis. The dose-response was described best by a linear equation. Orthovanadate did not significantly increase the frequencies of diploid sperm at any of the three doses tested, indicating that no complete meiotic arrest occurred. Orthovanadate was investigated also by the micronucleus test at i.p. doses of 1, 5, 15 or 25mg/kg bw, followed by bone marrow sampling 24h after treatment. None of the orthovanadate doses caused a significant increase in the rates of micronuclei (MN). Since the results show that orthovanadate induced non-disjunction during male meiosis without an accompanying induction of MN in bone marrow erythrocytes under the present experimental conditions and doses, it is concluded that male germ cells (meiosis) are more sensitive to the aneugenic effects of orthovanadate than somatic cells (mitosis). However, induction of micronuclei was reported in the literature with orthovanadate, vanadylsulfate and ammonium metavanadate, which contradicts the notion that vanadium compounds might be unique germ cell aneugens.  相似文献   

19.
20.
Transformed fibroblasts are specifically eliminated by their nontransformed neighbors through intercellular induction of apoptosis. This process depends on the number of nontransformed effector cells and on the local density of transformed target cells. Intercellular signalling is inhibited by SOD (a scavenger of superoxide anions), taurine (a scavenger of HOCl), 4-aminobenzoyl hydrazide (a mechanism-based inhibitor of peroxidase), DMSO (a hydroxyl radical scavenger), and two inhibitors of NO synthase. Therefore, selective apoptosis induction seems to be based on superoxide anion production by transformed cells, their spontaneous dismutation to hydrogen peroxide, and HOCl generation by a novel effector cell-derived peroxidase. HOCl then interacts with target cell–derived superoxide anions to yield hydroxyl radicals. Due to the short diffusion pathway of superoxide anions, hydroxyl radical generation is confined to the intimate vicinity of transformed cells. In parallel, NO derived from effector cells interacts with superoxide anions of target cells to yield the apoptosis inducer peroxynitrite. Reconstitution experiments using transformed or nontransformed cells in conjunction with myeloperoxidase, HOCl, or an NO donor demonstrated that superoxide anions generated extracellularly by transformed cells participate in intercellular signalling and at the same time determine transformed cells as selective targets for intercellular induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号