首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theroy relating rotational Brownian motion to the time autocorrelation function of the intensity of radiation from a fluorescent system composed of spherical rotors is presented. The calculation shows three relaxation times, two associated with the rotational diffusion, and the third associated with the natural decay of the fluorescence. The correlation function contains terms that relax independently of the fluorescence decay time, thus arbitrarily extending the time range over which rotational diffusion can be studied by fluorescence.  相似文献   

2.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

4.
In many proteins fluorescence from single tryptophan exhibits a nonexponential decay function. To elucidate the origin of this nonexponential decay, we have examined the fluorescence decay function and time-resolved fluorescence anisotropy of a fluorophore covalently bound to a macromolecule by solving a rotational analogue of the Smoluchowski equation. An angular-dependent quenching constant and potential energy for the fluorophore undergoing internal rotation were introduced into the equation of motion for fluorophore. Results of numerical calculations using the equations thus obtained predict that both the fluorescence decay function and time-resolved anisotropy are dependent on rotational diffusion coefficients of fluorophore and potential energy for the internal rotation. The method was applied to the observed fluorescence decay curve of the single tryptophan in apocytochrome c from horse heart. The calculated decay curves fit the observed ones well.  相似文献   

5.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

6.
Conformational changes in yeast enolase were investigated using steady state quenching and dynamic (fluorescence decay and fluorescence anisotropy decay) measurements. The tryptophan fluorescence rotational correlation time increases from 24 to 38 ns on subunit association. The acrylamide quenching constant decreases two-fold when the subunits associate. The conformational metal ion effect suggests a more compact molecule. Under conditions of catalysis, the correlation time decreases 25%, though the sedimentation constant does not change (Holleman, 1973). The enzyme may undergo a hinge-bending motion during catalysis.  相似文献   

7.
Time resolved fluorescence was used to study the dynamics on the nanosecond and subnanosecond time scale of the peptide hormone motilin. The peptide is composed of 22 amino acid residues and has one tyrosine residue in position 7, which was used as an intrinsic fluorescence probe. The measurements show that two rotational correlation times, decreasing with increasing temperature, are needed to account for the fluorescence polarization anisotropy decay data. Viscosity measurements combined with the fluorescence measurements show that the rotational correlation times vary approximately as viscosity with temperature. The shorter rotational correlation time (0.08 ns in an aqueous solution with 30% hexafluoropropanol, HFP at 20°C) should be related to internal movement of the tyrosine side chain in the peptide while the longer rotational correlation time (2.2 ns in 30% HFP at 20°C) describes the motion of the whole peptide. In addition, the interaction of motilin or the derivative motilin (Y7F) –23W (with tyrosine substituted by phenylalanine and with a tryptophan fluorophore added to the C-terminal) with negatively charged phospholipid vesicles (DOPG) was studied. The results show the development of a long anisotropy decay time which reflects partial immobilization of the peptide by interaction with the vesicles.Correspondence to: A. Gräslund  相似文献   

8.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

9.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

10.
The subnanosecond fluorescence and motional dynamics of the tryptophan residue in the bacteriophage M13 coat protein incorporated within pure dioleoylphosphatidylcholine (DOPC) as well as dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) and dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayers (80/20 w/w) with various L/P ratio have been investigated. The fluorescence decay is decomposed into four components with lifetimes of about 0.5, 2.0, 4.5 and 10.0 ns, respectively. In pure DOPC and DOPC/DOPG lipid bilayers, above the phase transition temperature, the rotational diffusion of the protein molecules contributes to the depolarization and the anisotropy of tryptophan is fitted to a dual exponential function. The longer correlation time, describing the rotational diffusion of the whole protein, shortens with increasing temperature and decreasing protein aggregation number. In DMPC/DMPG lipid bilayers, below the phase transition, the rotational diffusion of the protein is slowed down such that the subnanosecond anisotropy decay of tryptophan in this system reflects only the segmental motion of the tryptophan residue. Because of a heterogeneous microenvironment, the anisotropy decay must be described by three exponentials with a constant term, containing a negative coefficient and a negative decay time constant. From such a decay, the tryptophan residue within the aggregate undergoes a more restricted motion than the one exposed to the lipids. At 20 degrees C, the order parameter of the transition moment of the isolated tryptophan is about 0.9 and that for the exposed one is about 0.5.  相似文献   

11.
Analysis of the time decay of fluorescence anisotropy of 1-dimethylaminoaphthalene-5-sulfonyl (DNS) and fluorescamine derivatives of bovine alpha-lactalbumin and lysozyme reveals that no significant differences in mean rotational relaxation times are present. While fluorescamine molecules appear to orient randomly on these proteins, DNS is bound with a preferential orientation. Other fluorescence characteristics of the labels are also cited.  相似文献   

12.
Nanosecond fluorescence studies were performed on mitochondrial aspartate aminotransferase from beef liver to determine whether the dimeric enzyme displays any modes of flexibility in the nanosecond range. The most informative quantities calculated from nanosecond fluorescence measurements S(t) and D(t) decay in a monoexponential manner with decay times τS = 13 and τD = 10 nanoseconds respectively. The observed rotational correlation time θ = 43 M-seconds yields a volume for the dimeric enzyme of 1.97 × 105 Ao3. The rotational correlation time of aspartate aminotransferase is influenced by the presence of the enzyme glutamate dehydrogenase.  相似文献   

13.
Multiangle laser light scattering and fluorescence anisotropy decay measurements clarified the oligomeric states of native and recombinant tear lipocalin (lipocalin-1, TL). Native TL is monomeric. Recombinant TL (5-68 microM) with or without the histidine tag shows less than 7% dimer formation that is not in equilibrium with the monomeric form. Fluorescence anisotropy decay showed a correlation time of 9-10 ns for TL (10 microM-1 mM). Hydrodynamic calculations based on the crystallographic structure of a monomeric TL mutant closely concur with the observed correlation time. The solution properties calculated with HYDROPRO and SOLPRO programs from the available crystallographic structure of a monomeric TL mutant concur closely with the observed fluorescence anisotropy decay. The resulting model shows that protein topology is the major determinant of rotational correlation time and accounts for deviation from the Stokes-Einstein relation. The data challenge previous gel filtration studies to show that native TL exists predominantly as a monomer in solution rather than as a dimer. Delipidation of TL results in a formation of a complex oligomeric state (up to 25%). These findings are important as the dynamic processes in the tear film are limited by diffusional, translational as well as rotational, properties of the protein.  相似文献   

14.
It is generally assumed that the rotational diffusion coefficients of fluorophores are independent of time subsequent to excitation, and that the rotational diffusion coefficients of the ground and the excited states are the same. We now describe a linkage between the extent of solvent relaxation and the rate of fluorescence depolarization. Specifically, if a fluorophore displays time-dependent solvent relaxation it may also show a time-dependent decrease in its rotational rate. A decreased rate of rotation could result from the increased interaction with polar solvent molecules which occurs as a result of solvent relaxation. The decays of anisotropy predicted from our model closely mimic those often observed for fluorophores which are bound to macromolecules. For example, the decays are more complex than a single exponential, and the time-resolved anisotropy can display a limiting value which does not decay to zero. The effect of solvent relaxation upon the rates of rotational diffusion is expected to be most dramatic for solvent-sensitive fluorophores in a viscous environment. These conditions are frequently encountered for fluorophore-macromolecule complexes. Consideration of the linkage between solvent relaxation and rotational diffusion leads to two unusual predictions. First even spherical fluorophores in an isotropic environment could display multi- or nonexponential decays of fluorescence anisotropy. Secondly, for the special case in which the fluorophore dipole moment decreases upon excitation, the theory predicts that the anisotropy decay rate may increase with time subsequent to pulsed excitation. The predictions of this theory are consistent with published data on the effects of red-edge excitation upon the apparent rotational rates of fluorophores in polar solvents.  相似文献   

15.
Fluorescence lifetimes, anisotropies and rotational correlation time values of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes of normal, transformed, and revertant 3T3 cells were determined by nanosecond (nsec), photon counting spectrofluorimetry. No change in lifetime values with transformation or reversion is observed. Fluorescence anisotropy decay curves show at least two components; an initial relatively fast decay and a non-zero “plateau” level component. The observed changes in the average anisotropy values, which qualitatively follow steady-state fluorescence polarization values, is due primarily to changes in the non-zero “plateau” level component. The anisotropy decay curves suggest that the rotational motion of the probe is restricted to a limited angular range. The present results are compared with model membrane systems.  相似文献   

16.
We have Simulated the convolution of the emission anisotropy decay function with both a delta-pulse excitation function (exact solution) and a pulse function of either Gaussian or other functional form. It can be readily shown that convolution with a pulse of finite width leads to lower r0 values (anisotropy at time zero). Especially in the case of short-lived fluorescence, it can be demonstrated that the convoluted anisotropy lags behind the exact anisotropy leading to longer apparent rotational correlation times. Contour plots of r corrections as a function of both fluorescence lifetime and rotational correlation time were constructed for two different pulse profiles. Inspection of these contour diagrams can lead to an estimate of the relative error involved, when anisotropy data are not deconvoluted.  相似文献   

17.
The aldehydes present in acid-soluble type I collagen react with pyrenebutyrylhydrazine to form various types of complexes under different reaction conditions. These complexes exhibit one or more of three different pyrene fluorescence bands: monomer, excimer, and aggregate fluorescence. Collagen, whose aldehydes have been reduced with NaBH4, does not react with this fluorescent hydrazine, confirming that the hydrazine reacts specifically with aldehyde groups to form hydrazones. The absence of a reaction with pepsin-treated collagen also shows that the fluorescent labels are primarily in the nonhelical terminal telopeptides. Upon dialysis, the pyrene label bound to a saturated aldehyde in an α-chain is lost; whereas that bound to an unsaturated aldehyde remains on the protein. The pyrene monomer fluorescence in the β-chain of old collagen is stronger than that of young collagen. The formation of the pyrene excimer fluorescence implies the proximity of two pyrene molecules, probably attached to two adjacent aldehydes. Upon changing from acidic to neutral pH, both excimer and aggregate fluorescence bands disappear within a few seconds, revealing a very rapid alteration at the telopeptides.  相似文献   

18.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

19.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

20.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35) in three types of binding sites on a human serum albumin (HSA) molecule has been studied. The time-resolved decay of K-35 polarized fluorescence in HSA has been studied and it has been shown that probe molecules bound to different sites have different fluorescence decay time, which poses problems in the interpretation of polarization decay. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of each of vertical and horizontal polarized fluorescence components can be approximated by three exponentials corresponding to three types of binding sites. The mobility of the probe in different sites was estimated. The mobility was different but hindered by tens of times in all sites as compared with the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known first drug-binding site: here the rotational correlation was close to 72 ns or more. In the sites of the second type, the time was about 40 ns, and in the sites of the third type, the time was about 10 ns. It was found that the higher the rotation rate, the higher the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号