首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A M Starodub  J D Wood 《Life sciences》1999,64(26):PL305-PL310
Whole-cell perforated patch clamp recordings were used to analyze selectivity of omega-CgTx-MVIIC toxin for voltage-dependent calcium currents in cultured myenteric neurons from guinea-pig small intestine. Omega-CgTx-MVIIC (300 nM) blocked 37 +/- 9% of the peak current activated from -80 mV in 15 neurons by mostly affecting the plateau phase of the current. The toxin suppressed peak current activated from -30 mV dose-dependently with an IC50 of 70 +/- 8 nM. The blockade was complete at toxin concentrations of 1 microM. Thus, it appears that omega-CgTx-MVIIC blocks high voltage activated (HVA) calcium channels in the myenteric neurons unselectively as well as other types of HVA Ca2+ channels including P and Q channels.  相似文献   

2.
We have investigated the action of SNX482, a toxin isolated from the venom of the tarantula Hysterocrates gigas, on voltage-dependent calcium channels expressed in tsa-201 cells. Upon application of 200 nM SNX482, R-type alpha(1E) calcium channels underwent rapid and complete inhibition, which was only poorly reversible upon washout. However, upon application of strong membrane depolarizations, rapid and complete recovery from inhibition was obtained. Tail current analysis revealed that SNX482 mediated an approximately 70 mV depolarizing shift in half-activation potential, suggesting that the toxin inhibits alpha(1E) calcium channels by preventing their activation. Experiments involving chimeric channels combining structural features of alpha(1E) and alpha(1C) subunits indicated that the presence of the domain III and IV of alpha(1E) is a prerequisite for a strong gating inhibition. In contrast, L-type alpha(1C) channels underwent incomplete inhibition at saturating concentrations of SNX482 that was paralleled by a small shift in half-activation potential and which could be rapidly reversed, suggesting a less pronounced effect of the toxin on L-type calcium channel gating. We conclude that SNX482 does not exhibit unequivocal specificity for R-type channels, but highly effectively antagonizes their activation.  相似文献   

3.
Calcium plays roles in excitability, rhythm generation, and neurosecretion. Identifying channel subtypes that regulate calcium influx is thus important to understanding rhythmic GnRH secretion, which is a prerequisite for reproduction. Whole-cell voltage-clamp recordings were made from short-term dissociated GnRH adult ovariectomized (OVX) mice (n = 21) to identify channel subtypes that carry calcium current using selective channel blockers and voltage characteristics. Low-voltage activated (LVA) currents were not observed in 42 GnRH neurons tested, although most non-GnRH neurons (4/6) displayed LVA current. The L-type component of the high-voltage activated (HVA) calcium current was 25% +/- 2%. The remaining HVA calcium current passed through N-type (27% +/- 3%), P-type (15% +/- 1%), Q-type (18% +/- 3%), and R-type (15% +/- 1%) channels. Because these data differ substantially from reports on cultured GnRH neurons, which may represent reproductively immature models, we also examined GnRH neurons from gonadal-intact young (Postnatal Days 4-10, n = 8 mice) mice. LVA currents were still rare (2/28) in young mice. Although the same HVA components were observed, the proportions were shifted toward significantly more L-type and less N-type current, suggesting a possible developmental shift in calcium currents in GnRH neurons. These data suggest that calcium channel subtypes in GnRH neurons prepared in the short term from brain slices differ substantially from those in long-term cultured GnRH models. These findings provide a vital foundation to examine the role of calcium channels in the secretory and rhythmic machinery of GnRH neurons.  相似文献   

4.
Among voltage-gated Ca2+ channels the non-dihydropyridine-sensitive alpha1E subunit is functionally less well characterized than the structurally related alpha1A (omega-agatoxin-IVA sensitive, P- /Q-type) and alpha1B (omega-conotoxin-GVIA sensitive, N-type) subunits. In the rat insulinoma cell line, INS-1, a tissue-specific splice variant of alpha1E (alpha1Ee) has been characterized at the mRNA and protein levels, suggesting that INS-1 cells are a suitable model for investigating the function of alpha1Ee. In alpha1E-transfected human embryonic kidney (HEK-293) cells the alpha1E-selective peptide antagonist SNX-482 (100 nM) reduces alpha1Ed- and alpha1Ee-induced Ba2+ inward currents in the absence and presence of the auxiliary subunits beta3 and alpha2delta-2 by more than 80%. The inhibition is fast and only partially reversible. No effect of SNX-482 was detected on the recombinant T-type Ca2+ channel subunits alpha1G, alpha1H, and alpha1I showing that the toxin from the venom of Hysterocrates gigas is useful as an alpha1E-selective antagonist. After blocking known components of Ca2+ channel inward current in INS-1 cells by 2 microM (+/-)-isradipine plus 0.5 microM omega-conotoxin-MVIIC, the remaining current is reduced by 100 nM SNX-482 from -12.4 +/- 1.2 pA/pF to -7.6 +/- 0.5 pA/pF (n = 9). Furthermore, in INS-1 cells, glucose- and KCl-induced insulin release are reduced by SNX-482 in a dose-dependent manner leading to the conclusion that alpha1E, in addition to L-type and non-L-type (alpha1A-mediated) Ca2+ currents, is involved in Ca2+ dependent insulin secretion of INS-1 cells.  相似文献   

5.
Corticotropin-releasing factor (CRF) is a 41-amino acid peptide with distinct effects on gastrointestinal motility involving both CRF-1 and CRF-2 receptor-mediated mechanisms that are generally claimed to be centrally mediated. Evidence for a direct peripheral effect is rather limited. Electrophysiological studies showed a cAMP-dependent prolonged depolarization of guinea pig myenteric neurons on application of CRF. The current study aimed to test the direct effect of CRF on myenteric neurons and to identify the receptor subtype and the possible mechanisms involved. Longitudinal muscle myenteric plexus preparations and myenteric neuron cultures of guinea pig small intestine were incubated with the calcium indicator Fluo-4. Confocal Ca(2+) imaging was used to visualize activation of neurons on application of CRF. All in situ experiments were performed in the presence of nicardipine 10(-6) M to reduce tissue movement. Images were analyzed using Scion image and a specifically developed macro to correct for residual minimal movements. A 75 mM K(+)-Krebs solution identified 1,076 neurons in 46 myenteric ganglia (16 animals). Administration of CRF 10(-6) M and CRF 10(-7) M during 30 s induced a Ca(2+) response in 22.4% of the myenteric neurons (n = 303). Responses were completely abolished in the presence of the nonselective CRF antagonist astressin (n = 55). The selective CRF-1 receptor antagonist CP 154,526 (n = 187) reduced the response significantly to 2.1%. Stresscopin, a CRF-2 receptor agonist, could not activate neurons at 10(-7) M, and its effect at 10(-6) M (15.3%, n = 59) was completely blocked by CP 154,526. TTX 10(-6) M (n = 70) could not block the CRF-induced Ca(2+) transients but reduced the amplitude of the signals significantly. Removal of extracellular Ca(2+) blocked all responses to CRF (n = 47). L-type channels did not contribute to the CRF-induced Ca(2+) transients. Blocking N- or P/Q-type Ca(2+) channels did not reduce the responses significantly. Combined L- and R-type Ca(2+) channel blocking (SNX-482 10(-8) M, n = 64) abolished nearly all responses in situ. Combined L-, N-, and P/Q-type channel blocking also significantly reduced the response to 8.6%. Immunohistochemical staining for CRF-1 receptors clearly labeled individual cell bodies in the ganglia, whereas the CRF-2 receptor staining was barely above background. CRF induces Ca(2+) transients in myenteric neurons via a CRF-1 receptor-dependent mechanism. These Ca(2+) transients highly depend on somatic calcium influx through voltage-operated Ca(2+) channels, in particular R-type channels. Action potential firing through voltage-sensitive sodium channels increases the amplitude of the Ca(2+) signals. Besides centrally mediated effects, CRF is likely to modulate gastrointestinal motility on the myenteric neuronal level.  相似文献   

6.
L-type and R-type Ca(2+) currents were detected in frog semicircular canal hair cells. The former was noninactivating and nifedipine-sensitive (5 microM); the latter, partially inactivated, was resistant to omega-conotoxin GVIA (5 microM), omega-conotoxin MVIIC (5 microM), and omega-agatoxin IVA (0.4 microM), but was sensitive to mibefradil (10 microM). Both currents were sensitive to Ni(2+) and Cd(2+) (>10 microM). In some cells the L-type current amplitude increased almost twofold upon repetitive stimulation, whereas the R-type current remained unaffected. Eventually, run-down occurred for both currents, but was prevented by the protease inhibitor calpastatin. The R-type current peak component ran down first, without changing its plateau, suggesting that two channel types generate the R-type current. This peak component appeared at -40 mV, reached a maximal value at -30 mV, and became undetectable for voltages > or =0 mV, suggestive of a novel transient current: its inactivation was indeed reversibly removed when Ba(2+) was the charge carrier. The L-type current and the R-type current plateau were appreciable at -60 mV and peaked at -20 mV: the former current did not reverse for voltages up to +60 mV, the latter reversed between +30 and +60 mV due to an outward Cs(+) current flowing through the same Ca(2+) channel. The physiological role of these currents on hair cell function is discussed.  相似文献   

7.
This electrophysiological study was undertaken to investigate the role of voltage-operated Ca(2+) channels (VOCCs) in cultivated human neuroendocrine tumor (NET) cells. Patch-clamp techniques, measurements of intracellular Ca(2+) ([Ca(2+)](i)), and secretion analysis were performed using cultured human NET BON cells. Ba(2+) inward currents through R-type channels (Ca(V)2.3) were measured and identified by SNX-482 (10 n M), a novel voltage-sensitive R-type Ca(2+) channel antagonist. In the presence of nifedipine (5 micro M), omega-Conotoxin GVIA (100 n M) and omega-Agatoxin IVA (20 n M), R-type channel currents were also detectable. Release of Ca(2+) from intracellular Ca(2+) stores by intracellular application of inositol-1,4,5-trisphosphate (InsP(3); 10 micro M) via the patch pipette during whole-cell configuration as well as induction of capacitative Ca(2+) entry (CCE), a passive maneuver to release Ca(2+) from intracellular Ca(2+) stores, led to an increase in [Ca(2+)](i). This effect could be reduced by SNX-482 (20 n M). In addition, SNX-482 (25 n M) also decreased chromogranin A (CgA) secretion, whereas omega-Conotoxin GVIA (500 n M) and nifedipine (5 micro M) failed to reduce CgA secretion. We conclude that these data reveal neuronal R-type channel activity (Ca(V)2.3), for the first time associated with CgA secretion in BON cells. Influx of Ca(2+) by activation of R-type channels may lead to an increase of intracellular Ca(2+), which stimulates CgA secretion. Thus, R-type channels could play an important role in certain clinical characteristics of NETs, such as the hypersecretion syndrome.  相似文献   

8.
The influence of extracellular pH (pH(o)) on low-voltage-activated calcium channels of acutely isolated DRG neurons of rats was examined using the whole cell patch-clamp technique. It has been found that in the neurons of middle size with capacitance C=60+/-4.8 pF (mean+/-S.E., n=8) extracellular acidification from pH(o) 7.35 to pH(o) 6.0 significantly and reversibly decreased LVA calcium current densities by 75+/-3.7%, shifted potential for half-maximal activation to more positive voltages by 18.7+/-0.6 mV with significant reduction of its voltage dependence. The half-maximal potential of steady-state inactivation shifted to more positive voltages by 12.1+/-1.7 mV (n=8) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of middle size have midpoint pK(a)=6.6+/-0.02 and hill coefficient h=0.94+/-0.04 (n=5). In small cells with capacitance C=26+/-3.6 pF (n=5), acidosis decreased LVA calcium current densities only by 15.3+/-1.3% and shifted potential for half-maximal activation by 5.5+/-1.0 mV with reduction of its voltage dependence. Half-maximal potential of steady-state inactivation shifted to more positive voltages by 10+/-1.6 mV (n=4) and also became less voltage dependent. Dose-response curves for the dependence of maximum values of LVA currents on external pH in neurons of small size have midpoint pK(a)=7.9+/-0.04 and hill coefficient h=0.25+/-0.1 (n=4). These two identified types of LVA currents besides different pH sensitivity demonstrated different kinetic properties. The deactivation of LVA currents with weak pH sensitivity after switching off depolarization to -30 mV had substantially longer decay time than do currents with strong pH sensitivity (tau(d) approximately 5 ms vs. 2 ms respectively). It was found that the prolongation of depolarization steps slows the subsequent deactivation of T-type currents in small DRG neurons. Deactivation traces in these neurons were better described by the sum of two exponentials. Thus, we suppose that T-type channels in small DRG neurons are presented mostly by alpha1I subunit. We suggest that these two types of LVA calcium channels with different sensitivity to external pH can be differently involved in the origin of neuropathic changes.  相似文献   

9.
The electrophysiological and pharmacological properties of Ca(2+) current (I(Ca)) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca(2+), depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I(Ca) which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V(test) of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 microM), an L-type Ca(2+) channels antagonist, completely inhibited I(Ca), while the L-type Ca(2+) channels agonist Bay-K 8644 (1 microM) significantly increased I(Ca) amplitude. Moreover, the selective blocker of P-/Q-type Ca(2+) channels omega-agatoxin IVA partially blocked I(Ca) (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca(2+) channels, both nifedipine-sensitive, underlie the I(Ca) registered using low extracellular Ca(2+). The presence of the P-/Q-type Ca(2+) channels was confirmed by immunoblot analysis. When I(Ca) was recorded in a high concentration (30 mM) of extracellular Ca(2+) or Ba(2+) as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca(2+) channels blocker mibefradil (10 microM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca(2+) currents in human umbilical artery smooth muscle cells.  相似文献   

10.
Nitric Oxide (NO) is a diffusible second messenger that modulates ion channels, intrinsic excitability and mediates synaptic plasticity. In light of its activity-dependent generation in the principal neurons of the medial nucleus of the trapezoid body (MNTB), we have investigated its potential modulatory effects on native voltage-gated calcium channels (Ca(V)) within this nucleus. Whole-cell patch recordings were made from brain slices from P13-15 CBA mice. Slices were incubated with the inhibitor of neuronal nitric oxide synthase (nNOS) 7-nitroindazole (10 μM) and pharmacological blockers used to isolate Ca(2+) current subtypes. Unpaired observations in the presence and absence of the NO-donors sodium nitroprusside (SNP, 100 μM) or Diethyl-ammonium-nonoate (DEA, 100 μM) were made to elucidate NO-dependent modulation of the expressed Ca(V) subtypes. A differential effect of NO on the calcium channel subtypes was observed: Ca(V)1 and Ca(V)2.1 (L+R- and P/Q+R-type) conductances were potentiated, whereas N+R-type (Ca(V)2.2) and R-type (Ca(V)2.3) current amplitudes were unaffected. L+R-type currents increased from 0.36 ± 0.04 nA to 0.64 ± 0.11 nA and P/Q+R-type from 0.55 ± 0.09 nA to 0.94 ± 0.05 nA, thereby changing the balance and relative contribution of each subtype to the whole cell calcium current. In addition, N+R-type half-activation voltage was left shifted following NO exposure. NO-dependent modulation of P/Q+R and N+R-type, but not L+R-type, channels was removed by inhibition of soluble guanylyl cyclase (sGC) activity. This data demonstrates a differential effect of NO signalling on voltage-gated calcium entry, by distinct NO-dependent pathways.  相似文献   

11.
Calcium channel currents in isolated smooth muscle cells from human bronchus   总被引:10,自引:0,他引:10  
An electrophysiological study was carried out on smooth muscle cells that were enzymatically dissociated from bundles of muscle fibers dissected out of human bronchi obtained at thoracotomy. These cells that retain the contractile properties of intact bundles were voltage-clamped by means of the whole-cell patch-clamp technique. Upon voltage steps from a holding potential of -60 mV to more positive levels, the initial inward current was followed by large outward currents that inactivated slowly. These were subsequently reduced by substituting Cs+ for K+ in the internal solution and by using Ba2+ instead of Ca2+ as a charge carrier in the external solution. Under these conditions, the inward current did not completely inactivate in the course of 300-ms voltage steps. Inward current measured after leak subtraction was activated at a membrane potential of -25.8 +/- 5 mV, was maximum at +18 +/- 4 mV, and had an apparent reversal potential of +52.5 +/- 5.5 mV (n = 5). The potential at which steady-state inactivation was half-maximum was -28 mV (n = 5). This inward current was identified as a calcium current on the following basis: 1) it was not altered by 10 microM tetrodotoxin (TTX) or by lowering to 10 mM external Na+ concentration; 2) it was blocked by 2.5 mM Co2+ or 1 microM PN 200-110; 3) it was enhanced by 1 microM BAY K 8644, which in addition suppressed the PN 200-110 blockade.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To elucidate the physiological importance of neuronal (N)-type calcium channels in sympathetic controls, we analyzed N-type channel-deficient (NKO) mice. Immunoprecipitation analysis revealed increased interaction between beta3 (a major accessory subunit of N-type channels) and R-type channel-forming CaV2.3 in NKO mice. R-R intervals in NKO ECG recordings were elongated and fluctuating, suggesting disturbed sympathetic tonus. N-type channel inhibitors elongated the R-R interval in control mice, whereas R-type channel blocking with SNX-482 significantly affected NKO but not control mice, indicating a compensatory role for R-type channels. Echocardiography and Langendorff heart analysis confirmed a major role for R-type channels in NKO mice. Combined, our biochemical and physiological analyses strongly suggest that the remaining sympathetic tonus in NKO mice is dependent on R-type calcium channels.  相似文献   

13.
Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carried by sodium ions because it was blocked by TTX, decreased in amplitude when extracellular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current varied with clamp potential, being detectable at potentials as negative as -70 mV and reaching a maximum at approximately -40 mV. The maximum amplitude at -40 mV in 21 cells in slices was -0.34 +/- 0.05 nA (mean +/- 1 SEM) and -0.21 +/- 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with a potential between -70 and -30 mV and could be fitted with the Boltzmann equation, g = gmax/(1 + exp[(V' - V)/k)]). The average gmax was 7.8 +/- 1.1 nS in the 21 neurons in slices and 4.4 +/- 1.6 nS in the 10 dissociated cells that had lost their processes indicating that the channels responsible are probably most densely aggregated on or close to the soma. The half-maximum conductance occurred close to -50 mV, both in neurons in slices and in dissociated neurons, and the slope factor (k) was 5-9 mV. The persistent sodium current was much more resistant to inactivation by depolarization than the transient current and could be recorded at greater than 50% of its normal amplitude when the transient current was completely inactivated. Because the persistent sodium current activates at potentials close to the resting membrane potential and is very resistant to inactivation, it probably plays an important role in the repetitive firing of action potentials caused by prolonged depolarizations such as those that occur during barrages of synaptic inputs into these cells.  相似文献   

14.
It has been shown that beta auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a novel inhibitory effect of beta3 subunit on macroscopic Ba(2+) currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at "physiological" holding potentials (HPs) of -60 and -80 mV. At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca(v)2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced current suppression was reversed at a HP of -120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba(2+) (40 mM) as a charge carrier also largely diminished the effect of beta3 at -80 mV. Therefore, experimental conditions (HP, divalent cation concentration, and beta3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel beta3 effect. Steady-state inactivation curves revealed that N-type channels exhibited "closed-state" inactivation without beta3, and that beta3 caused an approximately 40-mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV. The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of beta3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV. Similar "ultra-slow" inactivation was observed for N-type channels without beta3. Thus, beta3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by causing a hyperpolarizing shift of the inactivation without affecting "ultra-slow" and "closed-state" inactivation properties.  相似文献   

15.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

16.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are responsible for the membrane pacemaker current that underlies the spontaneous generation of bioelectrical rhythms. However, their structure-function relationship is poorly understood. Previously, we identified several pore residues that influence HCN gating properties and proposed a pore-to-gate mechanism. Here, we systematically introduced cysteine-scanning substitutions into the descending portion of the P loop (residues 339-345) of HCN1-R (where R is resistance to sulfhydryl-reactive agents) channels, in which all endogenous cysteines except C303 have been removed or replaced. F339C, K340C, A341C, M342C, S343C, and M345C did not produce functional currents. Interestingly, the loss of function phenotype of F339C could be rescued by the reducing agent dithiothreitol (DTT). H344C but not HCN1-R and DTT-treated F339C channels were sensitive to blockade by divalent Cd(2+) (current with 100 microM Cd(2+)/control current at -140 mV = 67.6 +/- 2.9%, 109.3 +/- 3.1%, and 103.8 +/- 1.7%, respectively). Externally applied methanethiosulfate ethylammonium, a covalent sulfhydryl-reactive compound, irreversibly modified H344C by reducing the current at -140 mV (to 43.7 +/- 6.5%), causing a hyperpolarizing steady-state activation shift (change in half-activation voltage: approximately 6 mV) and decelerated gating kinetics (by up to 3-fold). Based on these results, we conclude that pore residues 339-345 are important determinants of the structure-function properties of HCN channels and that the side chain of H344 is externally accessible.  相似文献   

17.
Electrophysiological, immunocytochemical, and RT-PCR methods were used to identify a K(+) conductance not yet described in MCF-7 human breast cancer cells. A voltage-dependent and TEA-sensitive K(+) current was the most commonly observed in these cells. The noninactivating K(+) current (I(K)) was insensitive to iberiotoxin (100 nM) and charybdotoxin (100 nM) but reduced by alpha-dendrotoxin (alpha-DTX). Perfusion of alpha-DTX reduced a fraction of I(K) amplitude in a dose-dependent manner (IC(50) = 0.6 +/- 0.3 nM). This DTX sensitive I(K) exhibited a voltage threshold at -20 mV and was not inactivated. The time constant of activation was 5.3 +/- 2.2 ms measured at +60 mV. The averaged half-activation potential and slope factor values were 14 +/- 1.6 mV and 10 +/- 1.4, respectively. Immunocytochemical analysis demonstrated that plasma membrane was labeled by anti-Kv1.1 but not by anti-Kv1.2 nor anti-Kv1.3 antibodies. Furthermore, only Kv1.1 mRNA was detected in MCF-7 cells. Incubation in 1 and 10 nM alpha-DTX reduced cell proliferation by 20 and 30%, respectively. These data provide the first evidence of Kv1.1 K(+) channels expression in MCF-7 cells and indicate that these channels are implicated in cell proliferation.  相似文献   

18.
蝎毒耐热蛋白对大鼠海马神经元钠通道的抑制作用   总被引:5,自引:0,他引:5  
Zhang XY  Wang Y  Zhang J  Wang JY  Zhao J  Zhang WQ  Li S 《生理学报》2007,59(3):278-284
应用全细胞膜片钳技术观察蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)对急性分离大鼠海马神经元电压依赖性钠通道的影响。结果表明,急性分离大鼠海马神经元产生的河豚毒素(tetrodotoxin,TTX)敏感的电压依赖性钠电流被SVHRP浓度依赖性地抑制,半数抑制浓度为(0.0034±0.0004)μg/mL,Hill常数为0.4361±0.0318;SVHRP可使钠通道稳态激活曲线向电压的正方向移动,正常TTX敏感的钠通道的半数激活电压(V1/2)为(-34.38±0.62)mV(n=16),给予0.1μg/mL的SVHRP后V1/2为(-23.96±0.41)mV(n=8,P〈0.05),斜坡因子(κ)由正常的4.52±0.52变为3.73±0.08(n=8,P〈0.05)。SVHRP亦能改变电压依赖性钠通道的稳态失活曲线,使其向电位的负方向移动,SVHRP处理前钠通道半数失活电压(V1/2)为(-32.60±1.52)mV,κ为6.73±0.51(n=16);0.1μg/mL的SVHRP处理后V1/2变为(-50.69±2.55)mV(n=8,P〈0.01),κ为5.49±0.72(n=8,P〈0.05)。结果提示,SVHRP能抑制电压依赖性钠电流,改变钠通道的动力学特性,抑制其激活,促进其失活,从而影响神经元的兴奋性,这可能是其抗癫痫的机制之一。  相似文献   

19.
Dystrophin-deficient muscle fibers from mdx mice are believed to suffer from increased calcium entry and elevated submembranous calcium level, the actual source and functional consequences of which remain obscure. Here we compare the properties of the dihydropyridine receptor as voltage sensor and calcium channel in control and mdx muscle fibers, using the silicone-voltage clamp technique. In control fibers charge movement followed a two-state Boltzmann distribution with values for maximal charge, midpoint voltage, and steepness of 23 +/- 2 nC/ micro F, -37 +/- 3 mV, and 13 +/- 1 mV (n = 7). Essentially identical values were obtained in mdx fibers and the time course of charge recovery from inactivation was also similar in the two populations (tau approximately 6 s). In control fibers the voltage dependence of the slow calcium current elicited by 100-ms-long pulses gave values for maximal conductance, apparent reversal potential, half-activation potential, and steepness factor of 156 +/- 15 S/F, 65.5 +/- 2.9 mV, -0.76 +/- 1.2 mV, and 6.2 +/- 0.5 mV (n = 17). In mdx fibers, the half-activation potential of the calcium current was slightly more negative (-6.2 +/- 1.2 mV, n = 16). Also, when using longer pulses, the time constant of calcium current decay was found to be significantly larger (by a factor of 1.5-2) in mdx than in control fibers. These changes in calcium current properties are unlikely to be primarily responsible for a dramatic alteration of intracellular calcium homeostasis. They may be speculated to result, at least in part, from remodeling of the submembranous cytoskeleton network due to the absence of dystrophin.  相似文献   

20.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号