首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extreme inactivity of the legs in spinal cord-injured (SCI) individuals does not result in an impairment of the superficial femoral artery flow-mediated dilation (FMD). To gain insight into the underlying mechanism, the present study examined nitric oxide (NO) responsiveness of vascular smooth muscles in controls and SCI subjects. In eight healthy men (34 +/- 13 yr) and six SCI subjects (37 +/- 10 yr), superficial femoral artery FMD response was assessed by echo Doppler. Subsequently, infusion of incremental dosages of sodium nitroprusside (SNP) was used to assess NO responsiveness. Peak diameter was examined on a second day after 13 min of arterial occlusion in combination with sublingual administration of nitroglycerine. Resting and peak superficial femoral artery diameter in SCI subjects were smaller than in controls (P < 0.001). The FMD response in controls (4.2 +/- 0.9%) was lower than in SCI subjects (8.2 +/- 0.9%, P < 0.001), but not after correcting for area under the curve for shear rate (P = 0.35). When expressed as relative change from baseline, SCI subjects demonstrate a significantly larger diameter increase compared with controls at each dose of SNP. However, when expressed as a relative increase within the range of diameter changes [baseline (0%) - peak diameter (100%)], both groups demonstrate similar changes in response to SNP. Changes in diameter during SNP infusion and FMD response are larger in SCI subjects compared with controls. When these results are corrected, superficial femoral artery FMD and NO sensitivity in SCI subjects are not different from those in controls. This illustrates the importance of appropriate data presentation and suggests that, subsequent to structural inward remodeling of conduit arteries as a consequence of extreme physical inactivity, arterial function is normalized.  相似文献   

2.
We sought to identify the relationship between shear stimuli and flow-mediated vasodilation and to determine whether small muscle mass exercise training could provoke limb-specific improvements in endothelial function in older subjects. In five young (22 +/- 1 yr old) and six old (71 +/- 2 yr old) subjects, ultrasound Doppler measurements were taken in the arm (brachial artery) and leg (deep and superficial femoral arteries) after suprasystolic cuff occlusion with and without ischemic exercise to evaluate flow-mediated dilation (FMD) in both limbs. Older subjects were reevaluated after 6 wk of single-leg knee extensor exercise training. Before the training, a significant FMD was observed in the arm of young (3 +/- 1%) but not old (1 +/- 1%) subjects, whereas a significant leg FMD was observed in both groups (5 +/- 1% old vs. 3 +/- 1% young). However, arm vasodilation was similar between young and old when normalized for shear rate, and cuff occlusion with superimposed handgrip exercise provoked additional shear, which proportionately improved the FMD response in both groups. Exercise training significantly improved arm FMD (5 +/- 1%), whereas leg FMD was unchanged. However, ischemic handgrip exercise did not provoke additional arm vasodilation after training, which may indicate an age-related limit to shear-induced vasodilation. Together, these data demonstrate that vascular reactivity is dependent on limb and degree of shear stimuli, challenging the convention of diminished endothelial function typically associated with age. Likewise, exercise training improved arm vasodilation, indicating some preservation of vascular plasticity with age.  相似文献   

3.
We sought to examine flow-mediated vasodilation (FMD) in both the arm [brachial artery (BA)] and lower leg [popliteal artery (PA)] of 12 young, healthy subjects. Vessel diameter, blood velocity, and calculated shear rate were determined with ultrasound Doppler following a suprasystolic cuff occlusion (5 min) in both the BA and PA and an additional reduced occlusion period (30-120 s) in the BA to more closely equate the shear stimulus observed in the PA. The BA revealed a smaller diameter and larger postischemic cumulative blood velocity [area under curve (AUC)] than the PA, a combination that resulted in an elevated postcuff cumulative shear rate (AUC) in the BA (BA: 25,419 +/- 2,896 s(-1).s, PA 8,089 +/- 1,048 s(-1).s; P < 0.05). Thus, when expressed in traditional terms, there was a tendency for the BA to have a greater FMD than the PA (6.5 +/- 1.0 and 4.5 +/- 0.8%, respectively; P = 0.1). However, when shear rate was experimentally matched (PA: 4.5 +/- 0.8%; BA: -0.4 +/- 0.4%) or mathematically normalized (PA: 6.8 x 10(-4) +/- 1.6 x 10(-4)%Delta/s(-1).s; BA: 2.5 x 10(-4) +/- 0.4 x 10(-4)%Delta/s(-1).s), the PA revealed a greater FMD per unit of shear rate than the BA (P < 0.05). These data highlight the importance of assessing the shear stimulus to which each vessel is exposed and reveal limb-specific differences in flow-mediated dilation.  相似文献   

4.
With little known regarding sex and limb heterogeneity, we investigated vascular reactivity and ischemic reperfusion (IR) in the upper and lower extremities of 15 healthy men (26 +/- 2 yr) and women (23 +/- 1 yr). Doppler ultrasound was used to evaluate IR and flow-mediated dilation (FMD) after suprasystolic cuff occlusion in both the arm [brachial artery (BA)] and the leg [popliteal artery (PA)]. Cumulative IR [area under the curve (AUC)], normalized for muscle mass, revealed no sex-related differences in either limb (forearm: men 38 +/- 3 and women 44 +/- 4 ml/100 g; lower leg: men 12 +/- 2 and women 14 +/- 2 ml/100 g), while both groups revealed a greater IR per unit of arm muscle mass (AUC) compared with the lower leg (P < 0.05). The BA and PA were smaller in women (BA 0.31 +/- 0.1, PA 0.47 +/- 0.1 cm) than in men (BA 0.41 +/- 0.1, PA 0.6 +/- 0.2 cm). Absolute FMD/shear rate revealed attenuated vascular function in the PA of the women [women 3.3 +/- 0.6, men 5.0 +/- 0.8 (all x10(-6)) cm/s(-1).s] and no sex difference in the BA [women 1.2 +/- 0.2, men 1.6 +/- 0.1 (all x10(-6)) cm/s(-1).s]. In both sexes the PA demonstrated greater vascular reactivity than the BA. Thus vascular reactivity in healthy young people is greater in the legs, regardless of sex, and women have vascular function similar to men in the upper extremities but appear to have poorer vascular function normalized for shear rate in the lower extremities.  相似文献   

5.
In animal and in-vitro models, increased oscillatory shear stress characterized by increased retrograde shear-rate (SR) is associated with acutely decreased endothelial cell function. While previous research suggests a possible detrimental role of elevated retrograde SR on endothelial-function in the brachial artery in humans, little research has been conducted examining arteries in the leg. Examinations of altered shear pattern in the superficial femoral artery (SFA) are important, as this vessel is both prone to atherosclerosis and leg exercise is a common form of activity in humans. Seven healthy men participated; bilateral endothelial-function was assessed via flow-mediated-dilation (FMD) before and after 30-minute unilateral inflations of a thigh blood pressure cuff to either 75 mmHg or 100 mmHg on two separate visits. Inflation of the cuff induced increases in maximum anterograde (p<0.05), maximum retrograde (p<0.01), and oscillatory shear index (OSI) (p<0.001) in the cuffed leg at both inflation pressures. At 100 mmHg the increases in SR were larger in the retrograde than the anterograde direction evidenced by a decrease in mean SR (p<0.01). There was an acute decrease in relative FMD in the cuffed leg alone following inflation to both pressures. These results indicate that in the SFA, altered SR profiles incorporating increased retrograde and OSI influence the attenuation in FMD after a 30-minute unilateral thigh-cuff inflation intervention. Novel information highlighting the importance of OSI calculations and assessments of flow profiles add to current body of knowledge regarding the influence of changes in SR patterns on FMD. Findings from the current study may provide additional insight when designing strategies to combat impaired vascular function in the lower extremity where blood vessels are more prone to atherosclerosis in comparison to the upper extremity.  相似文献   

6.
Arm and leg vascular responsiveness to comparable shear stimuli during isolated dynamic exercise has not been assessed in humans. Consequently, six young cyclists performed incremental, intermittent handgrip exercise (arm) and knee-extensor exercise (leg) from 5 to 60% of maximal work rate (WR). Ultrasound Doppler measurements were taken in the brachial artery (BA), common femoral artery (CFA), and deep femoral artery (DFA) at rest and at each WR to assess diameter and sheer rate changes. Exercise at 60% maximum WR increased shear rate to the same degree in the CFA (314.3 +/- 33.3 s(-1)) and BA (303.3 +/- 26.3 s(-1)), but was significantly higher in the DFA (712.6 +/- 88.3 s(-1)). Compared with rest, exercise at 60% maximum WR did not alter CFA vessel diameter, but increased BA diameter (0.42 +/- 0.01 to 0.49 +/- 0.01 cm) and DFA diameter (0.59 +/- 0.05 to 0.64 +/- 0.04 cm). These data from the DFA demonstrate for the first time a substantial improvement in vascular reactivity in a conduit vessel only slightly distal to the CFA. However, despite comparable dilation between the BA and DFA, the slope of the relationship between vessel diameter and shear rate was much greater in the arm (2.4 x 10(-4) +/- 4.6 x 10(-5) cm/s) than in either the DFA (8.9 x 10(-5) +/- 1.5 x 10(-5) cm/s) or CFA (2.1 x 10(-5) +/- 1.1 x 10(-5) cm/s). Together, these findings reveal a substantial heterogeneity in vascular responsiveness in the leg during dynamic exercise but demonstrate that conduit vessel dilation for a given change in shear rate is, nonetheless, reduced in the leg compared with the arm.  相似文献   

7.
Local vasoconstriction plays an important role in maintaining blood pressure in spinal cord-injured individuals (SCI). We aimed to unravel the mechanisms of local vasoconstriction [venoarteriolar reflex (VAR) and myogenic response] using both limb dependency and cuff inflation in SCI and compare these with control subjects. Limb blood flow was measured in 11 male SCI (age: 24-55 yr old) and 9 male controls (age: 23-56 yr old) using venous occlusion plethysmography in forearm and calf during three levels of 1) limb dependency, and 2) cuff inflation. During limb dependency, vasoconstriction relies on both the VAR and the myogenic response. During cuff inflation, the decrease in blood flow is caused by the VAR and by a decrease in arteriovenous pressure difference, whereas the myogenic response does not play a role. At the highest level of leg dependency, the percent increase in calf vascular resistance (mean arterial pressure/calf blood flow) was more pronounced in SCI than in controls (SCI 186 +/- 53%; controls 51 +/- 17%; P = 0.032). In contrast, during cuff inflation, no differences were found between SCI and controls (SCI 17 +/- 17%; controls 14 +/- 10%). Percent changes in forearm vascular resistance in response to either forearm dependency or forearm cuff inflation were equal in both groups. Thus local vasoconstriction during dependency of the paralyzed leg in SCI is enhanced. The contribution of the VAR to local vasoconstriction does not differ between the groups, since no differences between groups existed for cuff inflation. Therefore, the augmented local vasoconstriction in SCI during leg dependency relies, most likely, on the myogenic response.  相似文献   

8.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

9.
Inhibition of a sympathetic stimulus (i.e., sympatholysis) during forearm exercise is reduced with age in women. This age-related alteration has not been characterized in the lower extremity vasculature of women, and the potential for blunting of the conduit artery dilatory response to a sudden increase in shear stress [flow-mediated dilation (FMD)] has not been examined in older adults of either sex. In the present study, we assessed popliteal artery diameter and velocity (Doppler ultrasound) in 16 young (23 +/- 1 yr) and 14 older (69 +/- 1 yr) women after 5 min of distal calf occlusion (FMD), 3 min of hand immersion in ice water [cold pressor test (CPT)], and 5 min of distal calf occlusion combined with hand immersion in ice water (FMD+CPT). Peak popliteal conductance after 5-min ischemia was not significantly different in young vs. older women. During the combined stimulus (FMD+CPT), the magnitude of vasoconstriction in the calf (reduction in peak popliteal artery conductance) was similar (5-8%), despite reduced resting adrenergic sensitivity to CPT [young (Y): -27.3 +/- 3.8%; older (O): -15.8 +/- 2.2%; P < 0.05] and blunted muscle sympathetic nerve activity responses to CPT (Y: 12.7 +/- 3.6 bursts/min; O: 7.8 +/- 2.5 bursts/min; P < 0.05) in older women. Popliteal FMD, normalized to the shear stimulus, was attenuated by 60-70% in older women. Peak popliteal diameter, measured during the combined stimulus (FMD+CPT), was blunted in young but not in older women (Y FMD: 5.5 +/- 0.1 mm; Y FMD+CPT: 5.4 +/- 0.1 mm; P = 0.03; O FMD: 5.8 +/- 0.2 mm; O FMD+CPT: 5.8 +/- 0.2 mm). These results confirm previous findings of diminished reactivity in the conduit arteries of older humans and provide the first evidence of reduced sympatholysis in the leg resistance vasculature of older women.  相似文献   

10.
The impact of exercise training on sympathetic activation is not well understood, especially across untrained and trained limbs in athletes. Therefore, in eight sedentary subjects (maximal oxygen consumption = 40 +/- 2 ml x kg(-1) x min(-1)) and eight competitive cyclists (maximal oxygen consumption = 64 +/- 2 ml x kg(-1) x min(-1)), we evaluated heart rate, blood pressure, blood flow, vascular conductance, and vascular resistance in the leg and arm during acute sympathetic stimulation [cold pressor test (CPT)]. The CPT was also performed during dynamic leg (knee extensor) or arm (handgrip) exercise at 50% of maximal work rate (WRmax) with measurements in the exercising limb. At rest, the CPT decreased vascular conductance similarly in the leg and arm of sedentary subjects (-33 +/- 8% leg, -38 +/- 6% arm) and cyclists (-34 +/- 4% leg, -31 +/- 9% arm), and during exercise CPT-induced vasoconstriction was blunted (i.e., sympatholysis) in both the leg and arm of both groups. However, the magnitude of sympatholysis was significantly different between the arm and leg of the sedentary group (-47 +/- 11% arm, -25 +/- 8% leg), and it was less in the arm of cyclists (-28 +/- 11%) than sedentary controls. Taken together, these data provide evidence that sympathetically mediated vasoconstriction is expressed equally and globally at rest in both sedentary and trained individuals, with a differential pattern of vasoconstriction during acute exercise according to limb and exercise training status.  相似文献   

11.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

12.
Previous work from our laboratory demonstrated that isometric handgrip (IHG) training improved local, endothelium-dependent vasodilation in medicated hypertensives [McGowan CL (PhD Thesis), 2006; McGowan et al. Physiologist 47: 285, 2004]. We investigated whether changes in the capacity of smooth muscle to dilate (regardless of endothelial factors) influenced this training-induced change, and we examined the acute vascular responses to a single bout of IHG. Seventeen subjects performed four 2-min unilateral IHG contractions at 30% of maximal voluntary effort, three times a week for 8 wk. Pre- and posttraining, brachial artery flow-mediated dilation (FMD, an index of endothelium-dependent vasodilation) and nitroglycerin-mediated maximal vasodilation (an index of endothelium-independent vasodilation) were measured in the exercised arm by using ultrasound before and immediately after acute IHG exercise. IHG training resulted in improved resting brachial FMD (P < 0.01) and no change in nitroglycerin-mediated maximal vasodilation. Pre- and posttraining, brachial artery FMD decreased following an acute bout of IHG exercise (normalized to peak shear rate, pre-, before IHG exercise: 0.01 +/- 0.002, after IHG exercise: 0.008 +/- 0.002%/s(-1); post-, before IHG exercise: 0.020 +/- 0.003, after IHG exercise: 0.010 +/- 0.003%/s(-1); P < 0.01). Posttraining, resting brachial artery FMD improved yet nitroglycerin-mediated maximal vasodilation was unchanged in persons medicated for hypertension. This suggests that the training-induced improvements in the resting brachial artery FMD were not due to underlying changes in the forearm vasculature. Acute IHG exercise attenuated brachial artery FMD, and although this impairment may be interpreted as hazardous to medicated hypertensives with already dysfunctional endothelium, the effects appear transient as repeated exposure to the IHG stimulus improved resting endothelium-dependent vasodilation.  相似文献   

13.
ABSTRACT: BACKGROUND: Acute doses of elevated retrograde shear rate (SR) appear to be detrimental to endothelial function in resting humans. However, retrograde shear increases during moderate intensity exercise which also enhances post-exercise endothelial function. Since SR patterns differ with the modality of exercise, it is important to determine if augmented retrograde SR during exercise influences post-exercise endothelial function. This study tested the hypothesis that (1) increased doses of retrograde SR in the brachial artery during lower body supine cycle ergometer exercise would attenuate post-exercise flow-mediated dilation (FMD) in a dose-dependent manner, and (2) antioxidant vitamin C supplementation would prevent the attenuated post-exercise FMD response. METHODS: Twelve men participated in four randomized exercise sessions (90 W for 20 minutes) on separate days. During three of the sessions, one arm was subjected to increased oscillatory and retrograde SR using three different forearm cuff pressures (20, 40, 60 mmHg) (contralateral arm served as the control) and subjects ingested placebo capsules prior to exercise. A fourth session with 60 mmHg cuff pressure was performed with 1 g of vitamin C ingested prior to the session. RESULTS: Post-exercise FMD following the placebo conditions were lower in the cuffed arm versus the control arm (arm main effect: P < 0.05) and without differences between cuff pressures (20 mmHg: 5.7 [PLUS-MINUS SIGN] 2.2 %; 40 mmHg: 4.7 [PLUS-MINUS SIGN] 1.3 %; 60 mmHg: 5.4 [PLUS-MINUS SIGN] 2.4 %) (P > 0.05). Following vitamin C treatment, post-exercise FMD in the cuffed and control arm increased from baseline (P < 0.05) but were not different (control: 7.1 [PLUS-MINUS SIGN] 3.5 % vs. cuffed: 6.6 [PLUS-MINUS SIGN] 3.3 %) (P > 0.05). CONCLUSIONS: These results indicate that augmented oscillatory and retrograde SR in non-working limbs during lower body exercise attenuates post-exercise FMD without an evident dose--response in the range of cuff pressures evaluated. Vitamin C supplementation prevented the attenuation of FMD following exercise with augmented oscillatory and retrograde SR suggesting that oxidative stress contributes to the adverse effects of oscillatory and retrograde shear during exercise on FMD.  相似文献   

14.
Exercise elevates shear stress in the supplying conduit artery. Although this is the most relevant physiological stimulus for flow-mediated dilation (FMD), the fluctuating pattern of shear that occurs may influence the shear stress-FMD stimulus response relationship. This study tested the hypothesis that the brachial artery FMD response to a step increase in shear is influenced by the fluctuating characteristics of the stimulus, as evoked by forearm exercise. In 16 healthy subjects, we examined FMD responses to step increases in shear rate in three conditions: stable shear upstream of heat-induced forearm vasodilation (FHStable); fluctuating shear upstream of heat-induced forearm vasodilation and rhythmic forearm cuff inflation/deflation (FHFluctuating); and fluctuating shear upstream of exercise-induced forearm vasodilation (FEStep Increase). The mean increase in shear rate (+/-SD) was the same in all trials (FHFluctuating): 51.69 +/- 15.70 s(-1); FHStable: 52.16 +/- 14.10 s(-1); FEStep Increase: 50.14 +/- 13.03 s(-1) P = 0.131). However, the FHFluctuating and FEStep Increase trials resulted in a fluctuating shear stress stimulus with rhythmic high and low shear periods that were 96.18 +/- 24.54 and 11.80 +/- 7.30 s(-1), respectively. The initial phase of FMD (phase I) was followed by a second, delayed-onset FMD and was not different between conditions (phase I: FHFluctuating: 5.63 +/- 2.15%; FHStable: 5.33 +/- 1.85%; FEStep Increase: 5.30 +/- 2.03%; end-trial: FHFluctuating: 7.76 +/- 3.40%; FHStable: 7.00 +/- 3.03%; FEStep Increase: 6.68 +/- 3.04%; P = 0.196). Phase I speed also did not differ (P = 0.685). In conclusion, the endothelium transduced the mean shear when exposed to shear fluctuations created by a typical handgrip protocol. Muscle activation did not alter the FMD response. Forearm exercise may provide a viable technique to investigate brachial artery FMD in humans.  相似文献   

15.
Aging is associated with a decline in vascular endothelial function, manifesting in part as impaired flow-mediated arterial dilation (FMD), but the underlying mechanisms are uncertain. Impaired FMD may be mediated in part by a decrease in synthesis of nitric oxide by endothelial nitric oxide synthase, and in clinical populations this has been attributed to competitive inhibition of l-arginine binding sites by asymmetric dimethylarginine (ADMA). If this mechanism is involved in the age-associated decline in FMD, increasing l-arginine concentration may swing the competitive balance in favor of l-arginine binding, restoring nitric oxide synthesis, and enhancing FMD in older humans. To test this hypothesis, we measured FMD (brachial ultrasound) in 10 younger (21 +/- 1 yr) and 12 older healthy men and women (60 +/- 2 yr) following infusion of vehicle or vehicle + l-arginine. Baseline FMD in the older subjects was only approximately 60% of that in the younger subjects (P = 0.002). l-Arginine did not significantly increase FMD in either group despite 23-fold (older) and 19-fold (younger) increases in plasma l-arginine concentrations (P < 0.0001 vs. control). Protein expression (immunofluorescence) in vascular endothelial cells showed that ADMA and the enzyme isoform that controls its degradation, dimethylarginine dimethylaminohydrolase II, were not different in the younger and older subjects. Endothelium-independent vasodilation (sublingual nitroglycerine) was not different between age groups or conditions. We conclude that acutely increasing plasma concentrations of l-arginine do not significantly improve brachial artery FMD in healthy older subjects and thus does not restore the age-associated loss of FMD. Together with the finding that endothelial cell ADMA protein expression was not increased in older adults, these findings suggest that competitive inhibition of l-arginine binding sites on endothelial nitric oxide synthase by ADMA is not an important mechanism contributing to impaired conduit artery endothelium-dependent dilation with aging in healthy humans.  相似文献   

16.
In human skin, the vasodilator response to local heating includes a sensory nerve-dependent peak followed by a nadir and then a slower, nitric oxide-mediated, endothelium-dependent vasodilation. To investigate whether chronic sympathectomy diminishes this endothelium-dependent vasodilation, we studied individuals who had previously undergone surgical T(2) sympathectomy (n = 9) and a group of healthy controls (n = 8). We assessed the cutaneous vascular response (laser-Doppler) to 30 min of local warming to 42.5 degrees C on the ventral forearm (no sympathetic innervation) and the lower legs (sympathetic nerves intact). Lower body negative pressure (LBNP) was measured to confirm sympathetic denervation. During local warming in sympathectomized individuals, vascular conductance reached an initial peak at both sites [achieving 1.73 +/- 0.22 laser-Doppler units (LDU)/mmHg in the forearm and 1.92 +/- 0.21 LDU/mmHg in the leg]. It then decreased to a nadir in the innervated leg [to 1.77 +/- 0.23 LDU/mmHg (P < 0.05)] but not in the sympathectomized arm (1.69 +/- 0.21 LDU/mmHg; P > 0.10). The maximal vasodilation seen during the slower phase was not different between limbs or between groups. Furthermore, LBNP caused a 44% reduction in forearm vascular conductance (FVC) in control subjects, but FVC did not decrease significantly in sympathectomized individuals, confirming sympathetic denervation. These data indicate that endothelial function in human skin is largely preserved after sympathectomy. The altered pattern of the response suggests that the nitric oxide-dependent portion may be accelerated in sympathectomized limbs.  相似文献   

17.
The physiological aging process is associated with endothelial dysfunction, as assessed by flow-mediated dilation (FMD). Aging is also characterized by increased sympathetic tone. Therefore, the aim of the present study is to assess whether acute changes in sympathetic activity alter FMD in the leg. For this purpose, the FMD of the superficial femoral artery was determined in 10 healthy young (22 +/- 1 yr) and 8 healthy older (69 +/- 1 yr) men in three different conditions: 1) at baseline, 2) during reduction of sympathetic activity, and 3) during sympathetic stimulation. Reduction of sympathetic activity was achieved by performing a maximal cycling exercise, leading to postexercise attenuation of the sympathetic responsiveness in the exercised limb. A cold pressor test was used to increase sympathetic activity. Nitroglycerin (NTG) was used to assess endothelium-independent vasodilation in all three conditions. Our results showed that, in older men, the FMD and NTG responses were significantly lower compared with young men (P = 0.001 and P = 0.02, respectively). In older men, sympathetic activity significantly affected the FMD response [repeated-measures (RM) ANOVA: P = 0.01], with a negative correlation between the level of sympathetic activity and FMD (R = -0.41, P = 0.049). This was not the case for NTG responses (ANOVA; P = 0.48). FMD and NTG responses in young men did not differ among the three conditions (RM-ANOVA: P = 0.32 and P = 0.31, respectively). In conclusion, in older men, FMD of the femoral artery is impaired. Local attenuation of the sympathetic responsiveness partly restores the FMD in these subjects. In contrast, in young subjects, acute modulation of the sympathetic nervous system activity does not alter flow-mediated vasodilation in the leg.  相似文献   

18.
19.
Attenuation of endothelium-derived nitric oxide (NO) synthesis is a hallmark of endothelial dysfunction. Early detection of this disorder may have therapeutic and prognostic implications. Plasma nitrite mirrors acute and chronic changes in endothelial NO-synthase activity. We hypothesized that local plasma nitrite concentration increases during reactive hyperemia of the forearm, reflecting endothelial function. In healthy subjects (n = 11) plasma nitrite and nitrate were determined at baseline and during reactive hyperemia of the forearm using reductive gas-phase chemiluminescence and flow-injection analysis, respectively. Endothelium-dependent dilation of the brachial artery was measured as flow-mediated dilation (FMD) using high-resolution ultrasound. Results were compared to patients with endothelial dysfunction as defined by reduced FMD (n = 11). Reactive hyperemia of the forearm increased local plasma nitrite concentration from 68 +/- 5 to 126 +/- 13 nmol/L (p < 0.01), whereas in endothelial dysfunction nitrite remained unaffected (116 +/- 12 to 104 +/- 10 nmol/L; n.s.), corresponding to nitrite reserves of 94 +/- 21 and -8 +/- 4%. This was accompanied by a significantly greater increase in brachial artery diameter (FMD: 8.5 +/- 0.4% vs 2.9 +/- 0.5%, for healthy subjects and endothelial dysfunction, respectively; p < 0.001). This observation suggests that nitrite changes reflect endothelial function. Assessment of local plasma nitrite during reactive hyperemia may open new avenues in the diagnosis of vascular function.  相似文献   

20.
Reactive hyperemia (RH) creates an uncontrolled, transient increase in brachial artery (BA) shear stress (SS) for flow-mediated dilation (FMD) assessment. In contrast, handgrip exercise (HGEX) can create similar, sustained SS increases over repeated trials. The purpose of this study was to examine the impact of repeated SS elevation via RH or HGEX and the relationship between RH and HGEX %FMD. BA diameter and blood velocity were assessed with echo and Doppler ultrasound in 20 healthy subjects. Visit A consisted of four 6-min HGEX trials (HGEX trials 1-4) at the intensity required to achieve a shear rate (SR = mean blood velocity/BA diameter; an estimate of SS) of 65 s(-1). Visit B consisted of four RH trials (RH trials 1-4). The RH SR area under the curve (AUC) was higher in trial 1 versus trial 3 and trial 4 (P = 0.019 and 0.047). The HGEX mean SR was similar across trials (mean SR = 66.1 ± 5.8 s(-1), P = 0.152). There were no differences in %FMD across trials or tests (RH trial 1: 6.9 ± 3.5%, trial 2: 6.9 ± 2.3%, trial 3: 7.1 ± 3.5%, and trial 4: 7.0 ± 2.8%; HGEX trial 1: 7.3 ± 3.6%, trial 2: 7.0 ± 3.6%, trial 3: 6.5 ± 3.5%, and trial 4: 6.8 ± 2.9%, P = 0.913). No relationship between subject's RH %FMD and HGEX %FMD was detected (r(2) = 0.12, P = 0.137). However, with response normalization, a relationship emerged (RH %FMD/SR AUC vs. HGEX %FMD/mean SR, r(2) = 0.44, P = 0.002). In conclusion, with repeat trials, there were no systematic changes in RH or HGEX %FMD. The relationship between normalized RH and HGEX %FMD suggests that endothelial responses to different SS profiles provide related information regarding endothelial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号