共查询到20条相似文献,搜索用时 15 毫秒
1.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET. 相似文献
2.
Action of epoxyeicosatrienoic acids on cellular function 总被引:7,自引:0,他引:7
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca2+-activated K+ channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor (PPAR) and PPAR, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs. soluble epoxide hydrolase; eicosanoids; dihydroxyeicosatrienoic acids; cytochrome P-450; peroxisome proliferator-activated receptor 相似文献
3.
Elmarakby AA 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(3):R321-R330
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome. 相似文献
4.
During periods of ischemia and vascular injury, factors are released which recruit monocytes and polymorphonuclear leukocytes (PMNs) to the site of injury by promoting adherence to the endothelium and transmigration across the endothelial cell (EC) layer. During coronary artery stenosis, we have shown that the endothelium-derived, cytochrome P450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are elevated. Therefore, we examined if the EETs could stimulate PMN adherence to cultured ECs. Pretreatment of ECs with EETs for either 30 min or 4 hr did not alter the adherence of 51Cr-labelled PMNs to ECs while phorbol myristate acetate (PMA) produced a 4-fold increase in PMN adherence. The combination of EETs and PMA did not significantly augment or diminish PMA-induced PMN adherence to ECs. When ECs and 51Cr-labelled PMNs were coincubated, treatment with EETs alone did not alter PMN adherence. However, when EETs and PMA were added together during the coincubation of ECs and 51Cr-labelled PMNs, the EETs produced a concentration-related decrease in PMN adherence. Microscopic analysis of the culture media bathing the cells revealed aggregates of the labeled PMNs. We examined the effects of the EETs on PMN aggregation. 8,9-EET (10, 50, and 100 microM) increased PMN aggregation (7 +/- 3, 35 +/- 10, and 65 +/- 11%) and intracellular calcium by 1.7 +/- 0.5, 4.7 +/- 1.4, and 6.8 +/- 2.3-fold above basal. 5,6-, 11,2- and 14,15-EETs also stimulated aggregation. FMLP stimulated the production of superoxide; however, 8,9-EET did not. These observations indicate that the decrease in PMN adherence observed in the coincubation experiment is the result of EET-induced PMN aggregation. Given the increase in EET production during coronary artery stenosis, these data may provide insight into their potential biological significance during myocardial ischemia and vascular injury. 相似文献
5.
Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands. 相似文献
6.
Epoxyeicosatrienoic acids (EETs), the eicosanoid biomediators synthesized from arachidonic acid by cytochrome P450 epoxygenases, are inactivated in many tissues by conversion to dihydroxyeicosatrienoic acids (DHETs). However, we find that human skin fibroblasts convert EETs mostly to chain-shortened epoxy-fatty acids and produce only small amounts of DHETs. Comparative studies with [5,6,8,9,11,12,14,15-(3)H]11,12-EET ([(3)H]11,12-EET) and [1-(14)C]11,12-EET demonstrated that chain-shortened metabolites are formed by removal of carbons from the carboxyl end of the EET. These metabolites accumulated primarily in the medium, but small amounts also were incorporated into the cell lipids. The most abundant 11, 12-EET product was 7,8-epoxyhexadecadienoic acid (7,8-epoxy-16:2), and two of the others that were identified are 9, 10-epoxyoctadecadienoic acid (9,10-epoxy-18:2) and 5, 6-epoxytetradecaenoic acid (5,6-epoxy-14:1). The main epoxy-fatty acid produced from 14,15-EET was 10,11-epoxyhexadecadienoic acid (10, 11-epoxy-16:2). [(3)H]8,9-EET was converted to a single metabolite with the chromatographic properties of a 16-carbon epoxy-fatty acid, but we were not able to identify this compound. Large amounts of the chain-shortened 11,12-EET metabolites were produced by long-chain acyl CoA dehydrogenase-deficient fibroblasts but not by Zellweger syndrome and acyl CoA oxidase-deficient fibroblasts. We conclude that the chain-shortened epoxy-fatty acids are produced primarily by peroxisomal beta-oxidation. This may serve as an alternate mechanism for EET inactivation and removal from the tissues. However, it is possible that the epoxy-fatty acid products may have metabolic or functional effects and that the purpose of the beta-oxidation pathway is to generate these products. 相似文献
7.
8.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP. 相似文献
9.
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel. 相似文献
10.
Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry 总被引:5,自引:0,他引:5
F A Fitzpatrick M D Ennis M E Baze M A Wynalda J E McGee W F Liggett 《The Journal of biological chemistry》1986,261(32):15334-15338
Certain epoxyeicosatrienoic acids (EETs) that were not cyclooxygenase substrates were effective cyclooxygenase inhibitors. Both (+/-)-14,15-cis-EET and (+/-)-8,9-cis-EET inhibited purified enzyme at concentrations from 1 to 50 microM; (+/-)-11,12-cis-EET was ineffective at concentrations below 100 microM. For the case of 14,15-cis-EET, only the (14R,15S)-stereoisomer was active. Other isomers including (14S,15R)-cis-EET, (14R,15R)-trans-EET, (14S,15S)-trans-EET, and the erythro and threo vicinal 14,15-diols were inactive. In addition to their effects on isolated enzyme preparations, cyclooxygenase activity in platelet suspensions, reflected by thromboxane B2 formation, was also inhibited by (14R,15S)-cis-EET and (+/-)-8,9-cis-EET but not by the other isomers. Thus potency and stereospecificity requirements were maintained for cyclooxygenase within intact platelets. Unlike the stereospecific inhibition of the cyclooxygenase enzyme, platelet aggregation induced by arachidonic acid was inhibited by all EET isomers at concentrations from 1 to 10 microM with no evident stereospecificity. Inhibition of aggregation was not uniformly associated with inhibition of thromboxane B2 formation; ordinarily, these two parameters correlate closely. This dissociation was not maintained for another biochemical process involved in platelet activation. For instance, there was a uniform correlation between inhibition of phosphorylation of a 40-kDa platelet protein and inhibition of aggregation. Our results suggest that effects of EET may originate from either stereospecific or nonspecific mechanisms. Definition of such mechanisms may be important to appreciate any physiological relevance of these substances. 相似文献
11.
Arachidonate epoxygenase: identification of epoxyeicosatrienoic acids in rabbit kidney 总被引:3,自引:0,他引:3
J R Falck V J Schueler H R Jacobson A K Siddhanta B Pramanik J Capdevila 《Journal of lipid research》1987,28(7):840-846
Epoxyeicosatrienoic acids were isolated and purified from female rabbit kidneys. They were identified as a group, prior to resolution, by packed column gas-liquid chromatography-mass spectroscopic techniques as their methyl esters as well as their trimethylsilyl bromohydrin methyl esters. Initial capillary gas-liquid chromatography-mass spectral analysis of the corresponding hydrogenated pentafluorobenzyl esters revealed the presence of the 8,9- and 14,15-epoxyeicosatrienoate regioisomers. These results, in conjunction with the documented in vitro biological activities of the arachidonate epoxygenase metabolites, suggest a role for them in renal function. 相似文献
12.
K Bernstrom K Kayganich R C Murphy F A Fitzpatrick 《The Journal of biological chemistry》1992,267(6):3686-3690
The different regioisomers of epoxyeicosatrienoic acids derived from cytochrome P-450 monooxygenase are readily esterified into phospholipids of mastocytoma cells. Incorporation of 14,15-epoxyeicosatrienoic acid was concentration-dependent, with Km = 1.1 microM and Vmax = 36 pmol/min/10(7) cells. Half-maximal incorporation occurred in 30 min, reaching a steady-state concentration of 470 pmol/10(6) cells. This was slightly lower than the values for arachidonic acid (665 pmol/10(6) cells) or 5-hydroxyeicosatetraenoic acid (554 pmol/10(6) cells). The distribution of 14,15-epoxyeicosatrienoic acid was preferential in the order phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylinositol greater than phosphatidyl serine much greater than neutral lipids plus fatty acids. This contrasted with 5(S)-hydroxyeicosatetraenoic acid, which was distributed primarily into phosphatidylcholine. Fast atom bombardment/tandem mass spectrometry facilitated identification of molecular species containing epoxyeicosatrienoic acids without relying on radioisotopes. Phosphatidylethanolamine plasmalogens with 16:1 or 18:2 at the sn-1 position, or an 18:0 acyl group, and phosphatidylcholine with 16:0 alkyl ether or an acyl group at the sn-1 position incorporated all possible epoxyeicosatrienoic acid regioisomers. Under basal conditions, cells eliminated 14,15-cis-epoxyeicosatrienoic acid slowly with a half-life of 34.9 +/- 7 h. Cells stimulated with calcium ionophore A23187 eliminated 14,15-epoxyeicosatrienoic acid rapidly. It was notable that its rate of release from phosphatidylcholine and phosphatidylinositol exceeded that for arachidonic acid. A coenzyme A-independent transacylase also catalyzed the transfer of epoxyeicosatrienoic acids from mastocytoma cell membranes into 1-palmitoyl-2-lysophosphatidylcholine. The cellular incorporation, release, and distribution of epoxyeicosatrienoic acids is distinctive and contrasts with most other eicosanoids, suggesting that these compounds may have both autocoid and nonautocoid functions. 相似文献
13.
Ben G. Zimmerman 《Life sciences》1973,13(5):507-515
Systematic arterial blood pressure and renal vascular resistance were found to be significantly greater in morphine, chloraloseurethane anesthetized renal hypertensive dogs than in similarly treated normotensive dogs. A lower dose infusion of the angiotensin antagonist 1-sar-8-ala-angiotensin II in the concentration of 20 mμg/ml into the renal artery decreased renal vascular resistance in the hypertensive, but not in the normotensive animals. The subsequent administration of a higher dose (approximately 50 mμg/ml) of 1-sar-8-ala-angiotensin II produced a decrease in renal vascular resistance in the normotensives, but a still greater effect in the hypertensives. Systemic blood pressure was significantly decreased with the higher dose in the hypertensive, but not in the normotensive group. The results indicate the participation of angiotensin-mediated renal vasoconstriction in the increased renal resistance in the hypertensive animals. 相似文献
14.
We investigated the respective contributions of the renin-angiotensin and alpha-adrenergic systems to nicotine-induced, canine, renal vasoconstriction by using saralasin (4 micrograms/kg/min) and phentolamine (25 micrograms/kg/min) blockade respectively. Nicotine infusion (0.024 mg/kg/min) increased mean arterial blood pressure (MABP) (114 +/- 3.0 to 219 +/- 8.0 mmHg) and decreased total renal blood flow (TRBF) (3.12 +/- 0.34 to 1.60 +/- 0.37 ml/min/g). Nicotine infusion produced a significantly lesser blood flow in outer cortex (OC), inner cortex (IC), and outer medulla (OM) compared to control dogs. The intrarenal-artery infusion of saralasin or phentolamine had no effect on the nicotine-induced MABP changes. Phentolamine infusion prior to nicotine resulted in a significantly greater TRBF (P less than 0.01), OC (p less than 0.001), IC (p less than 0.001) and OM (p less than 0.01) flow than in the group that received nicotine only. Saralasin pretreatment prior to nicotine resulted only in a significantly (p less than 0.01) greater OC flow than nicotine only. Our data suggest that while angiotensin II mediates a portion of the action of nicotine on the OC renal vasculature, the alpha adrenergic system predominates as the mediator of nicotine-induced renal vasoconstriction in the first 7 minutes of nicotine infusion. 相似文献
15.
16.
Lundblad MS Stark K Eliasson E Oliw E Rane A 《Biochemical and biophysical research communications》2005,327(4):1052-1057
Arachidonic acid is oxidized by cytochromes P450 2C (CYP2C) to epoxyeicosatrienoic acids (EETs), possessing vasoactive properties, with 11,12-EET as the endothelium derived hyperpolarization factor. Genetic variants of CYP2C enzymes have altered drug metabolizing capacity. Our primary aim was to determine whether EET biosynthesis differed in human liver microsomes with known CYP2C genotypes. Human liver microsomes (n = 25) of different CYP2C genotypes or yeast-expressed CYP2C enzymes were used. Analysis of metabolites was performed by liquid chromatography/mass spectrometry. Samples genotyped as CYP2C8*3/*3/CYP2C9*2/*2 exhibited a 34% (p < 0.05) decreased EET biosynthesis, compared to other CYP2C8/CYP2C9 haplotypes. Inhibition experiments suggested CYP2C8 and CYP2C9 to be the predominant catalysts of EETs. We found no differences between the three recombinantly expressed CYP2C9 variants, but CYP2C8.1 had lower Km than these isoforms. In conclusion, there are genetic differences in the CYP2C-dependent oxidation of arachidonic acid to vasoactive metabolites, of which the relevance to cardiovascular pathophysiology is still unclear. 相似文献
17.
Molecular and Cellular Biochemistry - The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal... 相似文献
18.
R Toto A Siddhanta S Manna B Pramanik J R Falck J Capdevila 《Biochimica et biophysica acta》1987,919(2):132-139
Epoxyeicosatrienoic acids, metabolites of the cytochrome P-450-mediated epoxygenase reaction, were detected in human urine by gas chromatographic-mass spectroscopic techniques after conversion to their hydrogenated and non-hydrogenated methyl and pentafluorobenzyl esters. Initial analysis of the regioisomeric composition utilizing the corresponding hydrogenated pentafluorobenzyl esters revealed the presence of the 8,9- and 14,15-isomers. 相似文献
19.
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. 相似文献
20.
Naciye Esma Tirtom Daichi Okuno Masahiro Nakano Ken Yokoyama Hiroyuki Noji 《The Journal of biological chemistry》2013,288(1):619-623
V1-ATPase is a rotary motor protein that rotates the central shaft in a counterclockwise direction hydrolyzing ATP. Although the ATP-binding process is suggested to be the most critical reaction step for torque generation in F1-ATPase (the closest relative of V1-ATPase evolutionarily), the role of ATP binding for V1-ATPase in torque generation has remained unclear. In the present study, we performed single-molecule manipulation experiments on V1-ATPase from Thermus thermophilus to investigate how the ATP-binding process is modulated upon rotation of the rotary shaft. When V1-ATPase showed an ATP-waiting pause, it was stalled at a target angle and then released. Based on the response of the V1-ATPase released, the ATP-binding probability was determined at individual stall angles. It was observed that the rate constant of ATP binding (kon) was exponentially accelerated with forward rotation, whereas the rate constant of ATP release (koff) was exponentially reduced. The angle dependence of the koff of V1-ATPase was significantly smaller than that of F1-ATPase, suggesting that the ATP-binding process is not the major torque-generating step in V1-ATPase. When V1-ATPase was stalled at the mean binding angle to restrict rotary Brownian motion, kon was evidently slower than that determined from free rotation, showing the reaction rate enhancement by conformational fluctuation. It was also suggested that shaft of V1-ATPase should be rotated at least 277° in a clockwise direction for efficient release of ATP under ATP-synthesis conditions. 相似文献