首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

2.
3.
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.  相似文献   

4.
Multiple SH2-mediated interactions in v-src-transformed cells.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Src homology 2 (SH2) domain is a noncatalytic region which is conserved among a number of signaling and transforming proteins, including cytoplasmic protein-tyrosine kinases and Ras GTPase-activating protein (GAP). Genetic and biochemical data indicate that the SH2 domain of the p60v-src (v-Src) protein-tyrosine kinase is required for full v-src transforming activity and may direct the association of v-Src with specific tyrosine-phosphorylated proteins. To test the ability of the v-Src SH2 domain to mediate protein-protein interactions, v-Src polypeptides were expressed as fusion proteins in Escherichia coli. The bacterial v-Src SH2 domain bound a series of tyrosine-phosphorylated proteins in a lysate of v-src-transformed Rat-2 cells, including prominent species of 130 and 62 kDa (p130 and p62). The p130 and p62 tyrosine-phosphorylated proteins that complexed v-Src SH2 in vitro also associated with v-Src in v-src-transformed Rat-2 cells; this in vivo binding was dependent on the v-Src SH2 domain. In addition to binding soluble p62 and p130, the SH2 domains of v-Src, GAP, and v-Crk directly recognized these phosphotyrosine-containing proteins which had been previously denatured and immobilized on a filter. In addition, the SH2 domains of GAP and v-Crk bound to the GAP-associated protein p190 immobilized on a nitrocellulose membrane. These results show that SH2 domains bind directly to tyrosine-phosphorylated proteins and that the Src SH2 domain can bind phosphorylated targets of the v-Src kinase domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ras GTPase-activating protein (GAP) contains two Src homology 2 (SH2) domains which are implicated in binding to tyrosine-phosphorylated sites in specific activated growth factor receptors and to a cytoplasmic tyrosine-phosphorylated protein, p62. We have used site-directed mutagenesis of the two GAP SH2 domains (SH2-N and SH2-C) to identify residues involved in receptor and p62 binding. A bacterial fusion protein containing the precise SH2-N domain, as defined by sequence homology, associated with both the activated beta platelet-derived growth factor receptor and epidermal growth factor receptor, and p62 in vitro. However, short deletions at either the N or C termini of the SH2-N domain abolished binding, suggesting that the entire SH2 sequence is required for formation of an active domain. Conservative substitutions of 2 highly conserved basic residues in the SH2-N domain, an arginine and a histidine, resulted in complete loss of receptor and p62 binding, whereas other basic residues, and residues at variable SH2 sites, were more tolerant of substitution. The conserved arginine and histidine therefore appear critical for association with phosphotyrosine-containing proteins, possibly through an interaction with phosphotyrosine. The GAP SH2-C domain, unlike SH2-N, does not bind efficiently to activated receptors or p62 in vitro. The SH2-C domain lacks 3 residues which are otherwise well conserved, and contribute to high affinity SH2-N binding. Replacement of 1 of these residues, a cysteine, with the consensus glycine, conferred SH2-C binding activity toward tyrosine-phosphorylated p62 and epidermal growth factor receptor. Loss-of-function and gain-of-function mutations in the GAP SH2 domains can therefore be used to identify residues that are critical for receptor and p62 binding.  相似文献   

6.
GRB2, a small protein comprising one SH2 domain and two SH3 domains, represents the human homologue of the Caenorhabditis elegans protein, sem-5. Both GRB2 and sem-5 have been implicated in a highly conserved mechanism that regulates p21ras signalling by receptor tyrosine kinases. In this report we show that in response to insulin, GRB2 forms a stable complex with two tyrosine-phosphorylated proteins. One protein is the major insulin receptor substrate IRS-1 and the second is the SH2 domain-containing oncogenic protein, Shc. The interactions between GRB2 and these two proteins require ligand activation of the insulin receptor and are mediated by the binding of the SH2 domain of GRB2 to phosphotyrosines on both IRS-1 and Shc. Although GRB2 associates with IRS-1 and Shc, it is not tyrosine-phosphorylated after insulin stimulation, implying that GRB2 is not a substrate for the insulin receptor. Furthermore, we have identified a short sequence motif (YV/IN) present in IRS-1, EGFR and Shc, which specifically binds the SH2 domain of GRB2 with high affinity. Interestingly, both GRB2 and phosphatidylinositol-3 (PI-3) kinase can simultaneously bind distinct tyrosine phosphorylated regions on the same IRS-1 molecule, suggesting a mechanism whereby IRS-1 could provide the core for a large signalling complex. We propose a model whereby insulin stimulation leads to formation of multiple protein--protein interactions between GRB2 and the two targets IRS-1 and Shc. These interactions may play a crucial role in activation of p21ras and the control of downstream effector molecules.  相似文献   

7.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

8.
Eph-related receptor tyrosine kinases have been implicated in the control of axonal navigation and fasciculation. To investigate the biochemical mechanisms underlying such functions, we have expressed the EphB2 receptor (formerly Nuk/Cek5/Sek3) in neuronal NG108-15 cells, and have observed the tyrosine phosphorylation of multiple cellular proteins upon activation of EphB2 by its ligand, ephrin-B1 (formerly Elk-L/Lerk2). The activated EphB2 receptor induced the tyrosine phosphorylation of a 62-64 kDa protein (p62[dok]), which in turn formed a complex with the Ras GTPase-activating protein (RasGAP) and SH2/SH3 domain adaptor protein Nck. RasGAP also bound through its SH2 domains to tyrosine-phosphorylated EphB2 in vitro, and complexed with activated EphB2 in vivo. We have localized an in vitro RasGAP-binding site to conserved tyrosine residues Y604 and Y610 in the juxtamembrane region of EphB2, and demonstrated that substitution of these amino acids abolishes ephrin-B1-induced signalling events in EphB2-expressing NG108-15 cells. These tyrosine residues are followed by proline at the + 3 position, consistent with the binding specificity of RasGAP SH2 domains determined using a degenerate phosphopeptide library. These results identify an EphB2-activated signalling cascade involving proteins that potentially play a role in axonal guidance and control of cytoskeletal architecture.  相似文献   

9.
SH2 (src homology region 2) domains are implicated in protein-protein interactions involved in signal transduction pathways. Isolated SH2 domains bind proteins that are tyrosine phosphorylated. A novel, phosphotyrosine-independent binding interaction between BCR, the Philadelphia chromosome breakpoint cluster region gene product, and the SH2 domain of its translocation partner c-ABL has recently been reported. We have examined the ability of additional SH2 domains to bind phosphotyrosine-free BCR and compared this with their ability to bind tyrosine-phosphorylated c-ABL 1b. Of 11 individual SH2 domains examined, 8 exhibited relatively high affinity for c-ABL 1b, whereas only 4 exhibited relatively high affinity for BCR. Binding of tyrosine-phosphorylated c-ABL 1b by the relatively high-affinity ABL and ARG SH2 domains was quantitatively analyzed, and equilibrium dissociation constants for both interactions were estimated to be in the range of 5 x 10(-7) M. The ABL SH2 domain exhibited relatively high affinity for phosphotyrosine-free BCR as well; however, this interaction appears to be about two orders of magnitude weaker than binding of tyrosine-phosphorylated c-ABL 1b. The ARG SH2 domain exhibited relatively weak affinity for BCR and was determined to bind about 10-fold less strongly than the ABL SH2 domain. The ABL and ARG SH2 domains differ by only 10 of 91 amino acids, and the substitution of ABL-specific amino acids into either the amino- or carboxy-terminal half of the ARG SH2 domain was found to increase its affinity for BCR. We discuss these results in terms of a model which has been proposed for peptide binding by class I histocompatibility glycoproteins.  相似文献   

10.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

11.
Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the specific motifs that it recognizes. Therefore, deciphering the phosphotyrosyl peptide motif recognized by an SH2 domain is the key to understanding its cellular function. Here we cloned all 120 SH2 domains identified in the human genome and determined the phosphotyrosyl peptide binding properties of 76 SH2 domains by screening an oriented peptide array library. Of these 76, we defined the selectivity for 43 SH2 domains and refined the binding motifs for another 33 SH2 domains. We identified a number of novel binding motifs, which are exemplified by the BRDG1 SH2 domain that selects specifically for a bulky, hydrophobic residue at P + 4 relative to the Tyr(P) residue. Based on the oriented peptide array library data, we developed scoring matrix-assisted ligand identification (or SMALI), a Web-based program for predicting binding partners for SH2-containing proteins. When applied to SH2D1A/SAP (SLAM-associated protein), a protein whose mutation or deletion underlies the X-linked lymphoproliferative syndrome, SMALI not only recapitulated known interactions but also identified a number of novel interacting proteins for this disease-associated protein. SMALI also identified a number of potential interactors for BRDG1, a protein whose function is largely unknown. Peptide in-solution binding analysis demonstrated that a SMALI score correlates well with the binding energy of a peptide to a given SH2 domain. The definition of the specificity space of the human SH2 domain provides both the necessary molecular basis and a platform for future exploration of the functions for SH2-containing proteins in cells.  相似文献   

12.
BACKGROUND: The adaptor protein Gads is a Grb2-related protein originally identified on the basis of its interaction with the tyrosine-phosphorylated form of the docking protein Shc. Gads protein expression is restricted to hematopoietic tissues and cell lines. Gads contains a Src homology 2 (SH2) domain, which has previously been shown to have a similar binding specificity to that of Grb2. Gads also possesses two SH3 domains, but these have a distinct binding specificity to those of Grb2, as Gads does not bind to known Grb2 SH3 domain targets. Here, we investigated whether Gads is involved in T-cell signaling. RESULTS: We found that Gads is highly expressed in T cells and that the SLP-76 adaptor protein is a major Gads-associated protein in vivo. The constitutive interaction between Gads and SLP-76 was mediated by the carboxy-terminal SH3 domain of Gads and a 20 amino-acid proline-rich region in SLP-76. Gads also coimmunoprecipitated the tyrosine-phosphorylated form of the linker for activated T cells (LAT) adaptor protein following cross-linking of the T-cell receptor; this interaction was mediated by the Gads SH2 domain. Overexpression of Gads and SLP-76 resulted in a synergistic augmentation of T-cell signaling, as measured by activation of nuclear factor of activated T cells (NFAT), and this cooperation required a functional Gads SH2 domain. CONCLUSIONS: These results demonstrate that Gads plays an important role in T-cell signaling via its association with SLP-76 and LAT. Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways.  相似文献   

13.
14.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

15.
SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.  相似文献   

16.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

17.
Folmer RH  Geschwindner S  Xue Y 《Biochemistry》2002,41(48):14176-14184
The protein kinase ZAP-70 is involved in T-cell activation, and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs), which are present in three of the subunits of the T-cell receptor. We have studied the tandem SH2 (tSH2) domains of ZAP-70, by both X-ray and NMR. Here, we present the crystal structure of the apoprotein, i.e., the tSH2 domain in the absence of ITAM. Comparison with the previously reported complex structure reveals that binding to the ITAM peptide induces surprisingly large movements between the two SH2 domains and within the actual binding sites. The conformation of the ITAM-free protein is partly governed by a hydrophobic cluster between the linker region and the C-terminal SH2 domain. Our data suggest that the two SH2 domains are able to undergo large interdomain movements. The proposed relative flexibility of the SH2 domains is further supported by the finding that no NMR signals could be detected for the two helices connecting the SH2 domains; these are likely to be broadened beyond detection due to conformational exchange. It is likely that this conformational reorientation induced by ITAM binding is the main signaling event activating the kinase domain in ZAP-70. Another NMR observation was that the N-terminal SH2 domain could bind tetrapeptides derived from the ITAM sequence, apparently without the need to interact with the C-terminal domain. In contrast, the C-terminal domain has little affinity for tetrapeptides. The opposite situation is true for binding to plain phosphotyrosine, where the C-terminal domain has a higher affinity. Distinct features in the crystal structure, showing the interdependence of both domains, explain these binding data.  相似文献   

18.
Src homology 2 (SH2) domains are evolutionary conserved small protein modules that bind specifically to tyrosine-phosphorylated peptides. More than 100 SH2 domains have been identified in proteins encoded by the human genome. The binding specificity of these domains plays a critical role in signaling within the cell, mediating the relocalization and interaction of proteins in response to changes in tyrosine phosphorylation states. Here we developed an SH2 domain profiling method based on a multiplexed fluorescent microsphere assay in which various SH2 domains are used to probe the global state of tyrosine phosphorylation within a cell and to screen synthetic peptides that specifically bind to each SH2 domain. The multiplexed, fluorescent microsphere-based assay is a recently developed technology that can potentially detect a wide variety of interactions between biological molecules. We constructed 25-plex SH2 domain-GST fusion protein-conjugated fluorescent microsphere sets to investigate phosphorylation-mediated cell signaling through the specific binding of SH2 domains to activated target proteins. The response of HeLa, COS-1, A431, and 293 cells and four breast cancer cell lines to epidermal growth factor and insulin were quantitatively profiled using this novel microsphere-based, multiplexed, high throughput assay system.  相似文献   

19.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

20.
P Lock  C L Abram  T Gibson    S A Courtneidge 《The EMBO journal》1998,17(15):4346-4357
We describe a method for identifying tyrosine kinase substrates using anti-phosphotyrosine antibodies to screen tyrosine-phosphorylated cDNA expression libraries. Several potential Src substrates were identified including Fish, which has five SH3 domains and a recently discovered phox homology (PX) domain. Fish is tyrosine-phosphorylated in Src-transformed fibroblasts (suggesting that it is a target of Src in vivo) and in normal cells following treatment with several growth factors. Treatment of cells with cytochalasin D also resulted in rapid tyrosine phosphorylation of Fish, concomitant with activation of Src. These data suggest that Fish is involved in signalling by tyrosine kinases, and imply a specialized role in the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号