首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylglyoxal (MG) is a metabolite of glucose. Our previous study demonstrated an elevated MG level with an increased oxidative stress in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats. Whether MG causes the generation of nitric oxide (NO) and superoxide anion (O2*-), leading to peroxynitrite (ONOO-) formation in VSMCs, was investigated in the present study. Cultured rat thoracic aortic SMCs (A-10) were treated with MG or other different agents. Oxidized DCF, reflecting H2O2 and ONOO- production, was significantly increased in a concentration- and time-dependent manner after the treatment of SMCs with MG (3-300 microM) for 45 min-18 h (n = 12). MG-increased oxidized DCF was effectively blocked by reduced glutathione or N-acetyl-l-cysteine, as well as L-NAME (p < 0.05, n = 12). Both O2*- scavenger SOD and NAD(P)H oxidase inhibitor DPI significantly decreased MG-induced oxidized DCF formation. MG significantly and concentration-dependently increased NO and O2*- generation in A-10 cells, which was significantly inhibited by L-NAME and SOD or DPI, respectively. In conclusion, MG induces significant generation of NO and O2*- in rat VSMCs, which in turn causes ONOO- formation. An elevated MG level and the consequential ROS/RNS generation would alter cellular signaling pathways, contributing to the development of different insulin resistance states such as diabetes or hypertension.  相似文献   

2.
When working on the regulation of prostacyclin synthase (PGIS), we found that PGIS was selectively inhibited by peroxynitrite (ONOO-), a potent oxidant formed by the combination of superoxide anion and nitric oxide (NO) at a rate of diffusion-controlled. None of the cellular antioxidants studied (i.e. GSH, Vitamins C and E, and others) prevented the inhibition of ONOO- on PGIS. This unexpected behavior was explained by a catalytic reaction of the iron-thiolate center of PGIS with ONOO- anion. In contrast, ONOO- activated both thromboxane A2-synthase and cyclooxygenases. In addition, we demonstrated that sub-micromolar levels of ONOO- inhibited PGI2-dependent vasorelaxation and triggered a PGH2-dependent vasospasm, indicating that ONOO- increased PGH2 formation as a consequence of PGIS nitration. We have subsequently demonstrated that endogenous ONOO- caused PGIS nitration and TxA2 activation in several diseased conditions such as atherosclerotic vessels, hypoxia-reperfusion injury, cytokines-treated cells, diabetes, as well as hypertension. Since NO is produced physiologically it seems that excessive formation of superoxide not only eliminates the vasodilatory, growth-inhibiting, anti-thrombotic and anti-adhesive effects of NO and PGI2 but also allows and promotes an action of the potent vasoconstrictor, prothrombotic agent, growth promoter, and leukocyte adherer, PGH2. We conclude that the nitration of PGIS nitration might be a new pathogenic mechanism for superoxide-induced endothelium dysfunction often observed in vascular diseases such as atherosclerosis, hypertension, ischemia, endotoxic shock, and diabetes.  相似文献   

3.
Vascular smooth muscle cells (SMCs) generate carbon monoxide (CO) from the degradation of heme by the enzyme heme oxygenase. Because recent studies indicate that CO influences the properties of vascular SMCs, we examined whether this diatomic gas regulates apoptosis in vascular SMCs. Treatment of cultured rat aortic SMCs with a cytokine cocktail consisting of interleukin-1beta (5 ng/ml), tumor necrosis factor-alpha (20 ng/ml), and interferon-gamma (200 U/ml) for 48 hr stimulated apoptosis, as demonstrated by DNA laddering, caspase-3 activation, and annexin V staining. However, the exogenous addition of CO (200 ppm) completely blocked cytokine-mediated apoptosis. The antiapoptotic action of CO was partially reversed by the soluble guanylate cyclase inhibitor, H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM). In contrast, the p38 mitogen-activated protein kinase inhibitor, SB203580 (10 microM), had no effect on SMC apoptosis. These findings indicate that CO is a potent inhibitor of vascular SMC apoptosis and that it blocks apoptosis, in part, by activating the cGMP signaling pathway. The ability of CO to inhibit vascular SMC apoptosis may play a critical role in attenuating lesion formation at sites of arterial damage.  相似文献   

4.
Guo YH  Gao W  Li Q  Li PF  Yao PY  Chen K 《Life sciences》2004,75(20):2483-2493
In a previous study, we have demonstrated that overexpression of the tissue inhibitors of metalloproteinases-4 (TIMP-4) can inhibit the neointima formation in the rat carotid model. To define the functions of tissue inhibitor of metalloproteinases-4 (TIMP-4) in SMCs, we transduced human TIMP-4 cDNA into rat aortic SMCs by using adenoviral vector. Overexpression of TIMP-4 blocked the conversion of pro-MMP-2 to the active form and inhibited basic fibroblast growth factor-induced migration by 56.7% (p < 0.01). Overexpression of TIMP-4 markedly increased apoptotic cell death without changing their proliferation. Importantly, overexpression of human TIMP-4 in the wall of balloon-injured rat carotid artery also increased SMC apoptosis. The percentages of TUNEL-positive cells of total cells increased significantly in AdTIMP-4 infected group compared with AdGFP infected group. These findings demonstrate that TIMP-4 can inhibit SMCs migration and induce apoptosis in vitro and in vivo, which may generate new targets for prevention and treatment of vascular diseases.  相似文献   

5.
Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α–actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10+, Sox17+) and a glia marker (S100β+). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.  相似文献   

6.
Accumulating evidence suggests that enhanced peroxynitrite (ONOO-) formation occurs during inflammation. We have studied the impact and the mechanisms of ONOO- action on expression of adhesion molecules on human neutrophils and coronary artery endothelial cells (HCAEC) and binding of neutrophils to HCAEC. Addition of ONOO- (0.1 to 200 5M) to isolated neutrophils resulted in a concentration-dependent down-regulation of L-selectin expression, and up-regulation of CD11b/CD18 expression. ONOO- stimulation of Erk activity was accompanied by activation of Ras, Raf-1 and MEK (mitogen-activated protein kinase kinase), and was sensitive to the MEK inhibitor PD 98059. We have observed a tight association between Erk activation and changes in CD11b/CD18 expression. ONOO- also evoked activation of neutrophil p38 MAPK. Neither ONOO--induced up-regulation of CD11b/CD18 expression nor Erk activation was affected by SB 203580, a selective inhibitor of p38 MAPK. ONOO- by itself had little effect on expression of ICAM-1 and E-selectin on HCAEC, whereas it markedly enhanced attachment of neutrophils to lipopolysaccharide-activated HCAEC only when it was added together with neutrophils. Increases in neutrophil adhesion evoked by ONOO- were blocked by an anti-CD18 monoclonal antibody. These data suggest that ONOO- activates Erk in neutrophils via the Ras/Raf-1/MEK signal transduction pathway, leading to up-regulation of surface expression of CD11b/CD18 and consequently to increased neutrophil adhesion to endothelial cells.  相似文献   

7.
Vascular smooth muscle cells (SMCs) phenotypes span a reversible continuum from quiescent/contractile (differentiated) to proliferative/synthetic (dedifferentiated) enabling them to perform a diversity of functions that are context-dependent and important for vascular tone-diameter homeostasis, vasculogenesis, angiogenesis or vessel reparation after injury. Dysregulated phenotype modulation and failure to maintain/regain the mature differentiated and contractile phenotypic state is pivotal in the development of vascular diseases such as atherosclerosis and restenosis after angioplasty and coronary bypass grafting. Many functions of SMCs such as adhesion, migration, proliferation, contraction, differentiation and apoptosis are regulated by a broad spectrum of cell-cell and cell-matrix adhesion molecules. Cadherins represent a superfamily of cell surface homophilic adhesion molecules with fundamental roles in morphogenetic and differentiation processes during development and in the maintenance of tissue integrity and homeostasis in adults. The cadherins have major inputs on signalling pathways and cytoskeletal assemblies that participate in regulating processes such as cell polarity, migration, proliferation, survival, phenotype and differentiation. Abnormalities in these processes have long been recognized to underlie pathological SMC-driven reparation, but knowledge on the involvement of cadherins is remarkably limited. This article presents a comprehensive review of cadherin family members currently identified on vascular SMCs in relation to their functions, molecular mechanisms of action and relevance for vascular pathology.  相似文献   

8.
The intima hyperplasia is a major morphological feature of various arterial pathologies such as atherosclerosis, postangioplasty restenosis and transplantation arteriopathy. It is commonly assumed that smooth muscle cells (SMC) comprising loci of the intima hyperplasia originate from arterial media. However, recent studies suggest that the bone marrow could also supply circulating vascular progenitor of SMCs and endothelial cells (EC). Such bone marrow progenitors participate in the formation of a cellular mass of neointima after experimental allotransplantation, mechanical vessel injury or hyperlipidemia induced experimental atherosclerosis. Circulating SMC and EC progenitors are also likely to be involved in the transplantation arteriopathy development in humans but their roles in the atherosclerosis and restenosis remain to be determined. Stages of the mobilization, defferentiation and proliferation of SMC progenitors could provide point of attack for new therapeutic strategies for the treatment of proliferative vascular diseases. The precise understanding of the neointima cells origin could provide a key for development of the optimal therapeutic strategy of treatnent of such disorders. This review is focused on the pathological significance of circulating progenitors of the bone marrow origin, particularly on the SMC progenitors, for development of vascular wall disorders.  相似文献   

9.
Although the pivotal role of platelet derived growth factor (PDGF)‐mediated signaling in vascular diseases was demonstrated, the pathophysiological mechanisms driving its over‐activation remain incompletely understood. Tissue transglutaminase (tTG) is a multifunctional protein expressed in the vasculature, including smooth muscle cells (SMCs), and implicated in several vascular pathologies. The goal of this study is to define the regulation of PDGF‐BB/PDGFRβ‐induced signaling pathways and cell responses by tTG in vascular SMCs. We find that in human aortic SMCs, shRNA‐mediated depletion and over‐expression of tTG reveals its ability to down‐regulate PDGFRβ levels and induce receptor clustering. In these cells, tTG specifically amplifies the activation of PDGFRβ and its multiple downstream signaling targets in response to PDGF‐BB. Furthermore, tTG promotes dedifferentiation and increases survival, proliferation, and migration of human aortic SMCs mediated by this growth factor. Finally, PDGF‐BB stimulates tTG expression in human aortic SMCs in culture and in the blood vessels in response to injury. Together, our results show that tTG in vascular SMCs acts as a principal enhancer within the PDGF‐BB/PDGFRβ signaling axis involved in phenotypic modulation of these cells, thereby suggesting a novel role for this protein in the progression of vascular diseases. J. Cell. Physiol. 227: 2089–2096, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
AMP-activated kinase (AMPK) is a fuel-sensing enzyme present in most mammalian tissue. In response to a decrease in the energy state of a cell AMPK is phosphorylated and activated by still poorly characterized upstream events. Exposure of bovine aortic endothelial cells (BAEC) to chemically synthesized ONOO- acutely and significantly increased phosphorylation of c-Src, PDK1, AMPK, and its downstream target, acetyl-CoA carboxylase (ACC), without affecting cellular AMP. This novel pathway for AMPK activation was confirmed by the use of pharmacological inhibitors and dominant-negative mutants. Exposure of BAEC to hypoxia-reoxygenation (H/R) caused a biphasic increase in AMPK and ACC phosphorylation, which was prevented by adenoviral overexpression of superoxide dismutase (SOD) or inhibition of nitric-oxide synthase (NOS) implicating a role of ONOO- formed during H/R. Furthermore, dominant-negative mutants of c-Src or kinase-defective PDK1 also blocked H/R-induced AMPK activation indicating that, as with addition of exogenous ONOO-, both c-Src and PI 3-kinase are upstream of AMPK. Moreover, H/R, like ONOO-, significantly increased co-immunoprecipitation of AMPK with c-Src, suggesting that ONOO- favors physical association of AMPK with upstream kinases. Taken together, our results indicate a novel pathway by which H/R via ONOO- activates AMPK in a c-Src-mediated, PI 3-kinase-dependent manner, and suggest that ONOO--induced activation of AMPK might thereby regulate metabolic enzymes, such as ACC.  相似文献   

11.
Phenotypic modulation, migration and proliferation of vascular smooth muscle cells (SMCs) are major events in restenosis after percutaneous transluminal angioplasty. Surface cell adhesion molecules, essential to morphogenesis and maintenance of adult tissue architecture, are likely to be involved, but little is known about cell adhesion molecules expressed on SMCs. T-cadherin is a glycosyl phosphatidylinositol-anchored member of the cadherin superfamily of adhesion molecules. Although highly expressed in vascular and cardiac tissues, its function in these tissues is unknown. We previously reported increased expression of T-cadherin in intimal SMCs in atherosclerotic lesions and proposed a role for T-cadherin in phenotype control. Here we performed immunohistochemical analysis of spatial and temporal changes in vascular T-cadherin expression following balloon catheterisation of the rat carotid artery. T-cadherin expression in SMCs markedly increases in the media early (1-4 days) after injury, and later (day 7-28) in forming neointima, especially in its preluminal area. Staining for monocyte/macrophage antigen ED-1, proliferating cell nuclear antigen and smooth muscle alpha-actin revealed that spatial and temporal changes in T-cadherin level coincided with the peak in cell migration and proliferation activity during neointima formation. In colchicine-treated cultures of rat aortic SMCs T-cadherin expression is increased in dividing M-phase cells but decreased in non-dividing cells. Together the data support an association between T-cadherin expression and SMC phenotype.  相似文献   

12.
13.
The glycosaminoglycan hyaluronan (HA) modulates cell proliferation and migration, and it is involved in several human vascular pathologies including atherosclerosis and vascular restenosis. During intima layer thickening, HA increases dramatically in the neointima extracellular matrix. Aging is one of the major risk factors for the insurgence of vascular diseases, in which smooth muscle cells (SMCs) play a role by determining neointima formation through their migration and proliferation. Therefore, we established an in vitro aging model consisting of sequential passages of human aortic smooth muscle cells (AoSMCs). Comparing young and aged cells, we found that, during the aging process in vitro,HA synthesis significantly increases, as do HA synthetic enzymes (i.e. HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose dehydrogenase), and the HA receptor CD44. In aged cells, we also observed increased CD44 signaling that consisted of higher levels of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs migrated faster than young cells, and such migration could be modulated by HA, which alters the ERK1/2 phosphorylation. HA oligosaccharides of 6.8 kDa and an anti-CD44 blocking antibody prevented ERK1/2 phosphorylation and inhibited AoSMCs migration. These results indicate that, during aging, HA can modulate cell migration involving CD44-mediated signaling through ERK1/2. These data suggest that age-related HA accumulation could promote SMC migration and intima thickening during vascular neointima formation.  相似文献   

14.
The biosynthesis of the physiological messenger nitric oxide (*NO) in neuronal cells is thought to depend on a glial-derived supply of the *NO synthase substrate arginine. To expand our knowledge of the mechanism responsible for this glial-neuronal interaction, we studied the possible roles of peroxynitrite anion (ONOO-), superoxide anion (O2*-), *NO, and H2O2 in L-[3H]arginine release in cultured rat astrocytes. After 5 min of incubation at 37 degrees C, initial concentrations of 0.05-2 mM ONOO- stimulated the release of arginine from astrocytes in a concentration-dependent way; this effect was maximum from 1 mM ONOO- and proved to be approximately 400% as compared with control cells. ONOO(-)-mediated arginine release was prevented by arginine transport inhibitors, such as L-lysine and N(G)-monomethyl-L-arginine, suggesting an involvement of the arginine transporter in the effect of ONOO-. In situ xanthine/xanthine oxidase-generated O2*- (20 nmol/min) stimulated arginine release to a similar extent to that found with 0.1 mM ONOO-, but this effect was not prevented by arginine transport inhibitors. *NO donors, such as sodium nitroprusside, S-nitroso-N-acetylpenicillamine, or 1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium+ ++-1,2-diolate, and H2O2 did not significantly modify arginine release. As limited arginine availability for neuronal *NO synthase activity may be neurotoxic due to ONOO- formation, our results suggest that ONOO(-)-mediated arginine release from astrocytes may contribute to replenishing neuronal arginine, hence avoiding further generation of ONOO- within these cells.  相似文献   

15.
The effects of peroxynitrite (ONOO-) on vascular responses were investigated in the systemic and hindquarters vascular bed and in the isolated perfused rat lung. Intravenous injections of ONOO- decreased systemic arterial pressure, and injections of ONOO- into the hindquarters decreased perfusion pressure in a dose-related manner. Injections of ONOO- into the lung perfusion circuit increased pulmonary arterial perfusion pressure. Responses to ONOO- were rapid in onset, short in duration, and repeatable without exhibiting tachyphylaxis. Repeated injections of ONOO- did not alter systemic, hindquarters, or pulmonary responses to endothelium-dependent vasodilators or other vasoactive agonists and did not alter the hypoxic pulmonary vasoconstrictor response. Injections of sodium nitrate or nitrite or decomposed ONOO- had little effect on vascular pressures. Pulmonary and hindquarters responses to ONOO- were not altered by a cyclooxygenase inhibitor in a dose that attenuated responses to arachidonic acid. These results demonstrate that ONOO- has significant pulmonary vasoconstrictor, systemic vasodepressor, and vasodilator activity; that short-term repeated exposure does impair vascular responsiveness; and that responses to ONOO- are not dependent on cyclooxygenase product release.  相似文献   

16.
Vascular injury that results in proliferation and dedifferentiation of vascular smooth muscle cells (SMCs) is an important contributor to restenosis following percutaneous coronary interventions or plaque rupture. Protease-activated receptor-1 (PAR1) has been shown to play a role in vascular repair processes; however, little is known regarding its function or the relative roles of the upstream proteases thrombin and matrix metalloprotease-1 (MMP-1) in triggering PAR1-mediated arterial restenosis. The goal of this study was to determine whether noncanonical MMP-1 signaling through PAR1 would contribute to aberrant vascular repair processes in models of arterial injury. A mouse carotid arterial wire injury model was used for studies of neointima hyperplasia and arterial stenosis. The mice were treated post-injury for 21 days with a small molecule inhibitor of MMP-1 or a direct thrombin inhibitor and compared with vehicle control. Intimal and medial hyperplasia was significantly inhibited by 2.8-fold after daily treatment with the small molecule MMP-1 inhibitor, an effect that was lost in PAR1-deficient mice. Conversely, chronic inhibition of thrombin showed no benefit in suppressing the development of arterial stenosis. Thrombin-PAR1 signaling resulted in a supercontractile, differentiated phenotype in SMCs. Noncanonical MMP-1-PAR1 signaling resulted in the opposite effect and led to a dedifferentiated phenotype via a different G protein pathway. MMP-1-PAR1 significantly stimulated hyperplasia and migration of SMCs, and resulted in down-regulation of SMC contractile genes. These studies provide a new mechanism for the development of vascular intimal hyperplasia and suggest a novel therapeutic strategy to suppress restenosis by targeting noncanonical MMP-1-PAR1 signaling in vascular SMCs.  相似文献   

17.
Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.  相似文献   

18.
Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional miRNAs might play an important role in determining vascular SMC phenotype. Microarray analysis of miRNAs was performed on human aortic SMCs undergoing phenotypic switching in response to serum withdrawal, and identified 31 significantly regulated entities. We chose the highly conserved candidate miRNA‐26a for additional studies. Inhibition of miRNA‐26a accelerated SMC differentiation, and also promoted apoptosis, while inhibiting proliferation and migration. Overexpression of miRNA‐26a blunted differentiation. As a potential mechanism, we investigated whether miRNA‐26a influences TGF‐β‐pathway signaling. Dual‐luciferase reporter assays demonstrated enhanced SMAD signaling with miRNA‐26a inhibition, and the opposite effect with miRNA‐26a overexpression in transfected human cells. Furthermore, inhibition of miRNA‐26a increased gene expression of SMAD‐1 and SMAD‐4, while overexpression inhibited SMAD‐1. MicroRNA‐26a was also found to be downregulated in two mouse models of AAA formation (2.5‐ to 3.8‐fold decrease, P < 0.02) in which enhanced switching from contractile to synthetic phenotype occurs. In summary, miRNA‐26a promotes vascular SMC proliferation while inhibiting cellular differentiation and apoptosis, and alters TGF‐β pathway signaling. MicroRNA‐26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease. J. Cell. Physiol. 226: 1035–1043, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.

Background

Experimental atherosclerosis is characterized by the formation of tertiary lymphoid structures (TLOs) within the adventitial layer, which involves the chemokine-expressing aortic smooth muscle cells (SMCs). TLOs have also been described around human atherothrombotic arteries but the mechanisms of their formation remain poorly investigated. Herein, we tested whether human vascular SMCs play the role of chemokine-expressing cells that would trigger the formation of TLOs in atherothrombotic arteries.

Results

We first characterized, by flow cytometry and immunofluorescence analysis, the prevalence and cell composition of TLOs in human abdominal aneurysms of the aorta (AAAs), an evolutive form of atherothrombosis. Chemotaxis experiments revealed that the conditioned medium from AAA tissues recruited significantly more B and T lymphocytes than the conditioned medium from control (N-AAA) tissues. This was associated with an increase in the concentration of CXCL13, CXCL16, CCL19, CCL20, and CCL21 chemokines in the conditioned medium from AAA tissues. Immunofluorescence analysis of AAA cryosections revealed that α-SMA-positive SMCs were the main contributors to the chemokine production. These results were confirmed by RT-qPCR assays where we found that primary vascular SMCs from AAA tissues expressed significantly more chemokines than SMCs from N-AAA. Finally, in vitro experiments demonstrated that the inflammatory cytokines found to be increased in the conditioned medium from AAA were able to trigger the production of chemokines by primary SMCs.

Conclusion

Together, these results suggest that human vascular SMCs in atherothrombotic arteries, in response to inflammatory signals, are converted into chemokine-expressing cells that trigger the recruitment of immune cells and the formation of aortic TLOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号