首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
  • 1.1. The development of Gallena mellonella is strongly affected by a low temperature of 18°C (the last instar persists for more than one year, instead of about 9 days at 30°C). At 18°C the last instar Galleria mellonella larvae respond to juvenilizing treatment—chilling stress or juvenile hormone analogue—with a very low percentage or no supernumerary moults, respectively.
  • 2.3. Experiments in which larvae subjected to such treatments were transferred from 18°C to 30°C and vice versa showed that for the realization of the larval programme after chilling stress application the higher (30°C) temperature is needed.
  • 3.4. In last instar larvae reared at 18°C there coexist very high juvenile hormone titre and high juvenile hormone esterase activity.
  • 4.5. This phenomenon which is found in both, chilled and unchilled larvae, is discussed.
  相似文献   

2.
Young last instar larvae of Galleria mellonella underwent supernumerary ecdyses within 3 to 6 days after being chilled at 0 to 1°C for 30 min. The frequency diminished from 89 ± 9.4% for the survivors of those that were chilled <16 hr after their last ecdysis, to 25 ± 11.2% for those 46 to 88 hr old, and was no longer evident beyond 123 hr.Irrespective of their ages, the larvae never became “superlarvae” unless they had fed after they had been chilled. This was unlike the requirement for metamorphosis, when a feeding period of 40 to 48 hr immediately following ecdysis allowed half the larvae that were subsequently chilled and starved to pupate. The propensity to become superlarvae could be extended by starvation. Chilling signaled the occurrence of the larval moulting program, but its expression was held in abeyance until the larvae had fed.Brains from chilled or unchilled donors were equally effective initiators of supernumerary larval apolyses. The capacity to respond to chilling was abolished following bilateral extirpation of the corpora cardiaca and corpora allata, but not after the corpus cardiacum and corpus allatum of one side were removed. This effect of bilateral cardiacectomy and allatectomy could be remedied by applying Altosid, a juvenile hormone analog. Potentiation of the larval-larval apolysis by chilling and by JH may involve separate mechanisms, for the analog was less effective on unchilled larvae than on those that had been chilled. The results are discussed with reference to the hypothesis that the brains of young larvae produce an “allatotropic hormone”.  相似文献   

3.
ABSTRACT. Sensitivity to cooling stress in the last instar larvae of Galleria mellonella was measured as (a) the number of extra larval moults, (b) the number of larvae retaining the ability to secrete silk, and (c) the number showing arrested development. With respect to (a) and (b) there were considerable differences in sensitivity across the day. A relationship was observed between the number of additional larval moults induced by chilling and the ability of prepupal larvae to spin silk: the periods during the 24 h when the most larvae passed through additional larval moults were periods characterized by the smallest number of larvae capable of spinning, and vice versa. These daily changes were apparently partly independent of developmental age. Daily variations in sensitivity also occurred when larvae of the same age were cooled at different times of day. It is suggested that these rhythms in cold-sensitivity are related to a cold-sensitive rhythm in juvenile hormone secretion, or hormone sensitivity in the tissues.  相似文献   

4.
A juvenoid compound known as methoprene has no effect on growth and respiratory metabolism in penultimate instar larvae that contain endogenous juvenile hormone. In the last larval instar the juvenoid induces enormously large somatic growth and postpones pupal ecdysis although it does not increase the overall metabolic intensity beyond certain limits.The metabolic changes caused by the juvenoid were more pronounced when connected with formation of the supernumerary larval instars. After this developmental change the larvae further continued to grow on and turned finally into the conspicuous giants. The overall metabolic capacity of the supernumerary larval tissues surpassed the above limitations determined by the body of a normal last instar larva. However, unlike in some other species, there was no hypermetabolic response to juvenoid treatments in this material.  相似文献   

5.
Metamorphosis in Zophobas atratus is dependent on isolation: when kept in grouped conditions, larvae undergo numerous supernumerary moults, growing in size, without pupating. This beetle thus represents an interesting model for the analysis of possible differences in the endocrine regulation of normal vs. supernumerary larval moults. In this study, the ecdysteroid titres have been analysed in this species, using enzyme immunoassay. The hormonal variations of larvae undergoing normal or supernumerary larval cycles were particularly examined, in either grouped or isolated conditions. Normal larval cycles presented very similar ecdysteroid variations in grouped as well as isolated conditions, showing a single hormonal peak (at about 1000pg/&mgr;l). Supplementary larval cycles, occurring in grouped conditions, also showed a similar single ecdysteroid peak, but after a longer period of basal levels. Isolation of such larvae triggered their larval-pupal transformation, which was characterized by more complex hormonal fluctuations, including a small ecdysteroid peak before the main one. Interestingly, the isolation of big larvae during a large part of their cycle induced this peculiar hormonal pattern synchronously, confirming the involvement of a complex neuroendocrine control between external conditions and ecdysteroid titres.  相似文献   

6.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

7.
The hypothesis that the brains of young, last instar larvae of Galleria mellonella (L.) initiate supernumerary larval apolyses by secreting an ‘allatotropic factor’ was reexamined. It was confirmed that following bilateral allatectomy the larvae lose their ability to produce supernumerary instars (superlarvae) in response to implanted brains. The JH analog Altosid caused the allatectomized larvae to undergo extra apolyses irrespective of whether or not brains had been implanted. Although the percentage of superlarvae obtained following Altosid treatment was not increased by the implanted brains, the onset of extra apolyses was accelerated. This suggests that the brain can promote larval-larval apolyses without acting first on the corpora allata (CA). Presumably, it does so by producing prothoracotropic hormone.The propensity to generate new larval structures was tested by injecting ecdysterone into larvae 48 and 65 hr after they had been allatectomized. Within 48 hr after both CA had been removed the precocious apolysis resulted in individuals with antennae that were partly larval and partly pupal, and by 65 hr the ability to reproduce larval parts had diminished further. Those that were hemi-allatectomized did not demonstrate this impairment. The results were consistent with the interpretation that allatectomy abolishes the capacity to produce superlarvae because the JH titer declines to a level insufficient to permit expression of the larval genetic program during the next moulting cycle. This is offered as an alternative to the hypothesis that allatectomy prevents implanted brains from producing superlarvae because the target organs of the ‘allatotropic factor’ have been removed.An attempt was made to confirm the observation that brains from young, last instar larvae are more effective initiators of supernumerary apolyses than those from donors in the process of pupating. There was no evidence for a different endocrine function by the brain during the two stages.  相似文献   

8.
Physico-chemical analysis of juvenile hormones (JHs) of Spodoptera littoralis revealed highest quantities in the second half of embryonic development and in newly hatched 1st instar larvae. At these stages, mostly JH II, JH I and little JH III were found, while in later stages only JH II and JH III were found. Titres fluctuated in a similar manner in all larval instars, being lowest during the moults. In last (=6th) instar larvae, JHs disappeared in the late feeding-digging stage and again increased in the early prepupal stage. Parasitisation with Chelonus inanitus, a solitary egg-larval parasitoid which induces in its host the precocious onset of metamorphosis in the 5th instar, did not alter JH homologue composition but led to a disappearance of JHs in the 5th instar. Implantation of a parasitoid larva into early 5th instar larvae containing polydnavirus/venom caused a drop in the JH titre which indicates that the parasitoid larva plays an important role in the manipulation of the host's JH titre. In the parasitoid larva, only JH III was found; titres were highest in the 2nd larval instar, a stage when the host is in the 5th instar and contains almost no JHs. Thus, JHs of the parasitoid and the host fluctuate in an independent manner.  相似文献   

9.
The robber fly Mallophora ruficauda Weidemann (Diptera: Asilidae) is an important pest of apiculture in the Pampas of Argentina. As adults, they prey on honey bees and other insects, whereas the larvae are ectoparasitoids of Scarabaeidae grubs. Females of M. ruficauda lay eggs in grassland where the larvae drop to the ground after being wind‐dispersed and burrow underground searching for their hosts. A temporal asynchrony exists between the appearance of the parasitoid larvae and the host, with the parasitoid appearing earlier than the host. The present study investigates whether a strategy of synchronization with the host exists in M. ruficauda and determines which of the larval instars are responsible for it. Survival patterns and duration of the immature stages of the parasitoid are investigated to determine whether there is a modulation in the development at any time that could reduce the asynchrony. Experiments are carried out to determine the survival and duration of free‐living larval stadia in the absence of cues associated with the host. It is established that the first instar is capable of moulting to the second instar without feeding and in the absence of any cues related to the host, a unique event for parasitoids. Also, the first instar of M. ruficauda moults to the second stage within a narrow temporal window, and the second instar never moults in the absence of the host. After parasitizing a host, the second instar has the longest lifespan and is the most variable with respect to survival compared with the rest of the instars. All larval instars, except for those in the last (fifth) stadium, have a similar rate of mortality to that of second‐instar larvae. Additionally, it is established that the host is killed during the fourth (parasitoid) stadium and that the first‐ and fifth‐larval instars develop independently of the host. Finally, possible mechanisms that could aid in compensating for the asynchrony between the parasitoid and the host, promoting the host–parasitoid encounter, are discussed.  相似文献   

10.
Biological activity assays with RH 5849 and RH 5992 indicated that both compounds affected growth and development of last-instar larvae ofSpodoptera exigua (Hübner) (Lepidoptera: Noctuidae) in a dose-dependent manner. Within the first 24 h after treatment by continuously offering leaves dipped in a water solution of ≥50 mg/l RH 5849 and ≥0.5 mg/l RH 5992, symptoms of a prematurely induced larval moult and head capsule apolysis were visible. Intoxicated larvae died shortly afterwards, showing signs of unsuccessful ecdysis. LC50-values of RH 5849 and RH 5992 for fifth-instarS. exigua larvae were 110 and 2.5 mg/l, respectively. Pyriproxyfen alone affected the larval stage and disturbed normal metamorphosis. One supernumerary larval instar occurred occasionally. LC50-value for pyriproxyfen was 1.7 mg/l. Larvae simultaneously treated with RH 5849 or RH 5992 and pyriproxyfen, continued to grow until they attained a size and weight about 2–3 times that of the controls. This growth was accompanied by at least one and sometimes two supernumerary moults. Concerning thein vivo imaginal wing disc growth and development, only in larvae treated with 10 and 50 mg/l RH 5849 or 0.5 mg/l RH 5992, tracheole migration was observed earlier than in the controls. When applying 300 mg/l RH 5849 or 3–7 mg/l RH 5992, the discs remained small and no signs of tracheole migration were observed. In larvae simultaneously treated with RH 5849 or RH 5992 and pyriproxyfen, tracheole migration was not prematurely induced and a pupal cuticle was produced in the discs of larvae, undergoing a supernumerary moult. No clear signs of evagination were observed.  相似文献   

11.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

12.
Effects of repeated carbon-dioxide anaesthesia during larval development on the number of moults, larval duration, and the body size of resulting adults were investigated. Concentration of carbon dioxide administered was 70%, and each period of anaesthesia lasted for 3 min. Anaesthesia administered twice a week until the 3rd instar increased the number of instars required to reach maturity. However, repeated anaesthesia after the 4th instar scarcely influenced the number of instars. On the other hand, repeated anesthesia prolonged larval duration whenever administered during the early or late instars. It is thus suggested that anaesthesia by carbon dioxide during larval development has two distinct effects: increasing the number of moults and prolonging larval duration. The former is stage specific and effective only during early instars, whereas the latter is effective during any particular instars until the last instar. The body size of resulting adults remained almost the same as for controls even after the repeated carbon-dioxide anaesthesia as many as 14 times. Some further observations concerning correlations between the number of moults, larval duration and adult body size are shown, and differences between the sexes regarding the number of instars and larval duration are also presented.  相似文献   

13.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

14.
The hormonal control of the facultative diapause of the codling moth has been investigated. The diapause can be divided into 4 phases or periods: (1) diapause induction by short-day conditions (SD) in young larvae, (2) initiation of the diapause in the early last larval instar by a high titre of juvenile hormone, (3) onset and maintenance of diapause with inactivity of the neuroendocrine system, as evidenced by the results of neck-ligation experiments, (4)termination of diapause by the production of ecdysteroid.Diapause-induced larvae pupated after spinning the cocoon, if the state of induction was changed by injection with the anti-juvenile hormone precocene II at the beginning of the last larval instar and subsequent results of neck-ligation experiments, (4) termination of diapause by the production of ecdysteroid. treated with juvenile hormone during the first 1.5 days after the last larval moult and subsequently reared under SD. Under LD, continuous application of juvenile hormone during the last larval instar and after spinning did not prevent the insects from moulting to either a supernumerary larva, a pupa or a larval-pupal intermediate. Termination of diapause, i.e. pupation, was achieved by injecting diapausing larvae with 20-hydroxyecdysone. Although juvenile hormone was found to have a prothoractropic effect in diapausing larvae, no pupal moult could be induced by the application of the hormone. Contrary to the hormonal situation before pupation of nondiapausing larvae, no juvenile hormone could be detected before or during the pupation of larvae after diapause.  相似文献   

15.
《Journal of insect physiology》1986,32(12):1065-1073
Topical application of juvenile hormone analogue, methoprene, induced a supernumerary larval moult in the silkworm, Bombyx mori. The incidence changed greatly depending on developmental stages and physiological states of the methoprene-treated larvae. When methoprene was applied to feeding larvae, only those treatments from the middle of the 2nd instar until the middle of the 4th instar were effective. An 18-h starvation period from the beginning of the 4th instar and a dose of 1 μg of methoprene per larva were required for 100% incidence of the perfect superlarvae. Allatectomy had no effects on the induction of superlarvae by methoprene. The treated 4th-instar larvae ecdysed to the 5th instar without any delay compared to the controls, and underwent an additional larval ecdysis 4.5 days later. The induced 6th-instar larvae took 8.5 days until the onset of cocoon spinning. The induced superlarvae showed reduced growth rates but an increase of final mass due to prolonged feeding period. A sharp but reduced peak in ecdysteroid titre in the haemolymph appeared one and a half days prior to each larval ecdysis in the treated larvae, suggesting that methoprene provokes the extra larval moult through an additional release of ecdysteroids.  相似文献   

16.
Growth-blocking peptide (GBP) has been isolated for the first time from the haemolymph of the host armyworm Pseudaletia separata whose development was halted in the last larval instar stage by parasitization with the parasitoid wasp Cotesia kariyai. Recent studies demonstrated that GBP not only exists in the plasma (haemolymph without cells) of parasitized last instar larvae, but also in the plasma of nonparasitized penultimate (5th) instar larvae. Monoclonal antibodies were prepared to measure the titers of GBP in nonparasitized and parasitized larval plasma. One of three monoclonal antibodies raised against GBP, which is the most specific for GBP, was used to quantify the concentration of plasma GBP. As this antibody recognized two plasma peptides other than GBP in crude plasma fractions, each plasma peptide fraction was separated by a reversed phase HPLC, and then plasma GBP level was measured by ELISA. The highest level of plasma GBP detected on Day 0 of the penultimate instar larvae was gradually decreased throughout the larval growth except for the temporary increase on Day 0 of last larval instar. After parasitization on Day 0 of last larval instar, two peaks of plasma GBP titer were detected during the last larval instar, one day and six days after parasitization. This characteristic increase and decrease in plasma GBP level was also observed by transferring last instar larvae of the armyworm from 25 to 10°C, as a result of which larvae delayed pupation by more than 15 days. From these results, it is reasonable to propose that plasma GBP in lepidopteran larvae might control certain upstream steps in a cascade of events leading to pupation; thus, an elevated level of plasma GBP interferes with normal metamorphosis from larvae to pupae.  相似文献   

17.
When newly-ecdysed 5th instar larvae of Manduca sexta were starved for 3 days and thereafter fed on standard diet the majority (90%) of the surviving larvae moulted into 6th instars. Allatectomy prior to starvation abolished the supernumerary moult, while denervation of the corpora allata (CA) had no effect.Cautery of medial neurosecretory cells, but not of the lateral cells, prevented supernumerary moulting and pupation ensued. Transplantation of brains from young 5th instar donors into larvae, whose medial neurosecretory cells were cauterized prior to starvation, restored the extra larval moult. Neither CA nor corpora cardiaca (CC) could be substituted for the medial neurosecretory cells.For induction of the supernumerary moult the medial neurosecretory cells are required only until day 1 after refeeding whereas the CA are required until day 3 after refeeding. Allatectomy on day 3 after refeeding resulted in the production of black 6th instar larvae.We conclude that starvation-induced supernumerary moulting is due to activation of the CA by allatotropin produced by medial neurosecretory cells in the brain. The anteromedial cells (group II) appear to be the source of allatotropin.  相似文献   

18.
Edysteroid agonist RH-2485 induces an immediate and fatal molt in Spodoptera littoralis when added to the diet of the 2nd and 4th instar larvae at 1 ppm, and to that of the 6th instar larvae at 0.001 ppm concentration. Ten times lower doses fed to the larvae continuously allow an apparently normal larval development that is terminated by a supernumerary larval molt. The other effects of RH-2485 include death during metamorphosis and impaired fertility of emerged adults. The number of progeny is reduced even with low RH-2485 doses that do not interfere with moltings; e.g., insects fed 0.0001 ppm since the 2nd, 4th, and 6th instar produce 72%, 62%, and 22%, respectively, less progeny than the controls. Feeding larvae with 10-1000 ppm Suneem oil (containing about 0.1-10 ppm azadirachtin) causes, in a stage- and dose-dependent manner, a cessation or reduction of feeding, delay of molts, death of larvae and pupae, and sterility of emerged adults; with 10 ppm Suneem oil, the number of progeny is reduced by 20-32%. Presence of Suneem oil in the diet does not influence the potential of RH-2485 to induce a prompt molt, but it increases ten times the potency to elicit a supernumerary larval molt. Certain combinations of RH-2485 with Suneem oil provoke up to 3 extra larval molts. Lethal developmental derangements and sterility are more frequent, and the response of larvae of different age is more uniform, when Suneem oil and RH-2485 are combined than when each of these agents is administered alone.  相似文献   

19.
Implantation of brains from chilled Galleria larvae into first-day last-instar host larvae results in a higher incidence of extra-larval moults than in control animals receiving unchilled brains. The ability of the implanted brains to induce an extra-larval moult depends on the number of implanted brains, age of larvae at chilling and the time interval between cooling and removal of the brain. The implanted brains must be present in the host larva for at least 2 days in order to induce an extra-larval moult. The brain taken from a chilled larva has no effect on the activity of the host brain. Application of fluoromevalonate (FMev) to insects which received the brains taken from chilled larvae suppresses the extra-larval moult responses, while implantation of brains from chilled larvae treated with FMev has no effect on the incidence of extra-larval moults produced by the recipients. The possibility that the chilled brain of Galleria larvae produces a hormonal factor that regulates corpora allata activity (allatotropin) is discussed.  相似文献   

20.
A growth-blocking peptide (GBP) with repressive activity against juvenile hormone (JH) esterase has been isolated from the last (6th) instar larval plasma of the armyworm Pseudaletia separata (Lepidoptera: Noctuidae) parasitized by the parasitoid wasp Apanteles kariyai (Hymenoptera: Braconidae) (1,2). This study demonstrates that GBP not only exists in the plasma of parasitized last instar larvae, but also in the plasma of unparasitized penultimate (5th) instar larvae, while the plasma of last instar larvae does not contain any detectable amount of GBP. The detection of GBP in unparasitized penultimate instar larvae, before the final larval molt, demonstrates that this factor is naturally occurring in the insect larva before the last larval instar and is seemingly coordinating, along with JH, the regulation of juvenile characteristics. This finding suggests the existence of a new type of juvenile peptide hormone in lepidopteran insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号