首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

2.
3.
The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1   总被引:1,自引:0,他引:1  
Soluble sugar levels affect a diverse array of plant developmental processes. For example, exposure to high levels of glucose or sucrose inhibits early seedling development of Arabidopsis thaliana (L.) Heynh. Media-shift experiments indicate that Arabidopsis seedlings lose their sensitivity to the inhibitory effects of high sugar levels on early development within approximately two days after the start of imbibition. The sugar-insensitive1 (sis1) mutant of Arabidopsis was isolated by screening for plants that are insensitive to the inhibitory effects of high concentrations of sucrose on early seedling development. The sis1 mutant also displays glucose and mannose resistant phenotypes and has an osmo-tolerant phenotype during early seedling development. The sis1 mutant is resistant to the negative effects of paclobutrazol, an inhibitor of gibberellin biosynthesis, on seed germination. Characterization of the sis1 mutant revealed that it is allelic to ctr1, a previously identified mutant with a constitutive response to ethylene.  相似文献   

4.
5.
Mutants of Arabidopsis deficient in a major leaf phenylpropanoid ester, 2-O-sinapoyl-L-malate, were identified by thin-layer chromatographic screening of methanolic leaf extracts from several thousand mutagenized plants. Mutations at a locus designated SIN1 also eliminate accumulation of the sinapic acid esters characteristic of seed tissues. Because of increased transparency to UV light, the sin1 mutants exhibit a characteristic red fluorescence under UV light, whereas wild-type plants have a blue-green appearance due to the fluorescence of sinapoyl malate in the upper epidermis. As determined by in vivo radiotracer feeding experiments, precursor supplementation studies, and enzymatic assays, the defect in the sin1 mutants appears to block the conversion of ferulate to 5-hydroxyferulate in the general phenylpropanoid pathway. As a result, the lignin of the mutant lacks the sinapic acid-derived components typical of wild-type lignin.  相似文献   

6.
Plant root development is highly responsive both to changes in nitrate availability and beneficial microorganisms in the rhizosphere. We previously showed that Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacteria strain isolated from rapeseed roots, alleviates the inhibition exerted by high nitrate supply on lateral root growth. Since soil-borne bacteria can produce IAA and since this plant hormone may be implicated in the high nitrate-dependent control of lateral root development, we investigated its role in the root development response of Arabidopsis thaliana to STM196. Inoculation with STM196 resulted in a 50% increase of lateral root growth in Arabidopsis wild-type seedlings. This effect was completely abolished in aux1 and axr1 mutants, altered in IAA transport and signaling, respectively, indicating that these pathways are required. The STM196 strain, however, appeared to be a very low IAA producer when compared with the high-IAA-producing Azospirillum brasilense sp245 strain and its low-IAA-producing ipdc mutant. Consistent with the hypothesis that STM196 does not release significant amounts of IAA to the host roots, inoculation with this strain failed to increase root IAA content. Inoculation with STM196 led to increased expression levels of several IAA biosynthesis genes in shoots, increased Trp concentration in shoots, and increased auxin-dependent GUS staining in the root apices of DR5::GUS transgenic plants. All together, our results suggest that STM196 inoculation triggers changes in IAA distribution and homeostasis independently from IAA release by the bacteria.  相似文献   

7.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   

8.
To better understand the role of active oxygen species (AOS) in acquired resistance to increased levels of ultraviolet (UV)-B irradiation in plants, we isolated an Arabidopsis mutant that is resistant to methyl viologen, and its sensitivity to UV-B was investigated. A complementation test revealed that the obtained mutant was allelic to the ozone-sensitive radical-induced cell death1-1 (rcd1-1). Therefore, this mutant was named rcd1-2. rcd1-2 was recessive and nearly 4-fold more resistant to methyl viologen than wild type. It exhibited a higher tolerance to short-term UV-B supplementation treatments than the wild type: UV-B-induced formation of cyclobutane pyrimidine dimers was reduced by one-half after 24 h of exposure; the decrease in quantum yield of photosystem II was also diminished by 40% after 12 h of treatment. Furthermore, rcd1-2 was tolerant to freezing. Steady-state mRNA levels of plastidic Cu/Zn superoxide dismutase and stromal ascorbate peroxidase were higher in rcd1-2 than in wild type, and the mRNA level of the latter enzyme was enhanced by UV-B exposure more effectively in rcd1-2. UV-B-absorbing compounds were more accumulated in rcd1-2 than in wild type after UV-B exposure for 24 h. These findings suggest that rcd1-2 methyl viologen resistance is due to the enhanced activities of the AOS-scavenging enzymes in chloroplasts and that the acquired tolerance to the short-term UV-B exposure results from a higher accumulation of sunscreen pigments. rcd1 appears to be a mutant that constitutively shows stress responses, leading to accumulation of more pigments and AOS-scavenging enzymes without any stresses.  相似文献   

9.
Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.  相似文献   

10.
11.
《Journal of Proteomics》2010,73(1):30-40
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC–MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.  相似文献   

12.
The Arabidopsis chy1 mutant is resistant to indole-3-butyric acid, a naturally occurring form of the plant hormone auxin. Because the mutant also has defects in peroxisomal beta-oxidation, this resistance presumably results from a reduced conversion of indole-3-butyric acid to indole-3-acetic acid. We have cloned CHY1, which appears to encode a peroxisomal protein 43% identical to a mammalian valine catabolic enzyme that hydrolyzes beta-hydroxyisobutyryl-CoA. We demonstrated that a human beta-hydroxyisobutyryl-CoA hydrolase functionally complements chy1 when redirected from the mitochondria to the peroxisomes. We expressed CHY1 as a glutathione S-transferase (GST) fusion protein and demonstrated that purified GST-CHY1 hydrolyzes beta-hydroxyisobutyryl-CoA. Mutagenesis studies showed that a glutamate that is catalytically essential in homologous enoyl-CoA hydratases was also essential in CHY1. Mutating a residue that is differentially conserved between hydrolases and hydratases established that this position is relevant to the catalytic distinction between the enzyme classes. It is likely that CHY1 acts in peroxisomal valine catabolism and that accumulation of a toxic intermediate, methacrylyl-CoA, causes the altered beta-oxidation phenotypes of the chy1 mutant. Our results support the hypothesis that the energy-intensive sequence unique to valine catabolism, where an intermediate CoA ester is hydrolyzed and a new CoA ester is formed two steps later, avoids methacrylyl-CoA accumulation.  相似文献   

13.
Post-translational modifications of histones, including acetylation, play a key role in modulating dynamic changes in chromatin structure and gene activity. Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases. HDA6 is a RPD3-type histone deacetylase in Arabidopsis. The Arabidopsis HDA6 mutant, axe1-5, and HDA6 RNA-interfering (HDA6-RNAi) plants displayed higher levels of acetylated H3 compared with wild-type, suggesting that HDA6 affects histone acetylation levels globally. The expression of the jasmonate responsive genes, PDF1.2, VSP2, JIN1, and ERF1, was down-regulated in axe1-5 and HDA6-RNAi plants. Furthermore, axe1-5 and HDA6-RNAi plants displayed increased leaf longevity compared with the wild type. The expression of the senescence-associated genes, SAG12 and SEN4, was down-regulated in the axe1-5 and HDA6-RNAi plants. In addition, axe1-5 and HDA6-RNAi plants displayed late-flowering. The expression of FLC was up-regulated and hyperacetylated in axe1-5 and HDA6-RNAi plants, suggesting that HDA6 is required to deacetylate FLC chromatin and thereby repress its expression. Our results suggest that HDA6 is involved in jasmonate response, senescence, and flowering in Arabidopsis.  相似文献   

14.
The long-lived mutant of Caenorhabditis elegans, clk-1, is unable to synthesize ubiquinone, CoQ(9). Instead, the mutant accumulates demethoxyubiquinone(9) and small amounts of rhodoquinone(9) as well as dietary CoQ(8). We found a profound defect in oxidative phosphorylation, a test of integrated mitochondrial function, in clk-1 mitochondria fueled by NADH-linked electron donors, i.e. complex I-dependent substrates. Electron transfer from complex I to complex III, which requires quinones, is severely depressed, whereas the individual complexes are fully active. In contrast, oxidative phosphorylation initiated through complex II, which also requires quinones, is completely normal. Here we show that complexes I and II differ in their ability to use the quinone pool in clk-1. This is the first direct demonstration of a differential interaction of complex I and complex II with the endogenous quinone pool. This study uses the combined power of molecular genetics and biochemistry to highlight the role of quinones in mitochondrial function and aging.  相似文献   

15.
16.
Growth and development of the axr1 mutants of Arabidopsis.   总被引:25,自引:5,他引:20       下载免费PDF全文
C Lincoln  J H Britton    M Estelle 《The Plant cell》1990,2(11):1071-1080
We have recovered eight new auxin-resistant lines of Arabidopsis that carry mutations in the AXR1 gene. These eight lines, together with the 12 lines described in a previous report, define at least five different axr1 alleles. All of the mutant lines have a similar phenotype. Defects include decreases in plant height, root gravitropism, hypocotyl elongation, and fertility. Mutant line axr1-3 is less resistant to auxin than the other mutant lines and has less severe morphological abnormalities. This correlation suggests that the morphological defects are a consequence of a defect in auxin action. To determine whether the altered morphology of mutant plants is associated with changes in cell size or tissue organization, tissue sections were examined using scanning electron microscopy. No clear differences in cell size were observed between wild-type and mutant tissues. However, the vascular bundles of mutant stems were found to be less well differentiated than those in wild-type stems. The auxin sensitivity of rosette-stage plants was determined by spraying plants with auxin solutions. Mutant rosettes were found to be significantly less sensitive to exogenously applied auxin than wild-type rosettes, indicating that the AXR1 gene functions in aerial portions of the plant. Our studies suggest that the AXR1 gene is required for auxin action in most, if not all, tissues of the plant and plays an important role in plant development. Linkage studies indicate that the gene is located on chromosome 1 approximately 2 centiMorgans from the closest restriction fragment length polymorphism.  相似文献   

17.
The SKP1-Cullin/Cdc53-F-box protein ubiquitin ligases (SCF) target many important regulatory proteins for degradation and play vital roles in diverse cellular processes. In Arabidopsis there are 11 Cullin members (AtCUL). AtCUL1 was demonstrated to assemble into SCF complexes containing COI1, an F-box protein required for response to jasmonates (JA) that regulate plant fertility and defense responses. It is not clear whether other Cullins also associate with COI1 to form SCF complexes, thus, it is unknown whether AtCUL1, or another Cullin that assembles into SCF(COI1) (even perhaps two or more functionally redundant Cullins), plays a major role in JA signaling. We present genetic and physiological data to directly demonstrate that AtCUL1 is necessary for normal JA responses. The homozygous AtCUL1 mutants axr6-1 and axr6-2, the heterozygous mutants axr6/AXR6, and transgenic plants expressing mutant AtCUL1 proteins containing a single amino acid substitution from phenylalanine-111 to valine, all exhibit reduced responses to JA. We also demonstrate that ax6 enhances the effect of coi1 on JA responses, implying a genetic interaction between COI1 and AtCUL1 in JA signaling. Furthermore, we show that the point mutations in AtCUL1 affect the assembly of COI1 into SCF, thus attenuating SCF(COI1) formation.  相似文献   

18.
Cytokinins are involved in plant cell proliferation leading to plant growth and morphogenesis. Earlier we described a mutant of Arabidopsis thaliana, amp1, that had five times higher levels of cytokinin and had a number of pleiotropic phenotypes, including increased cell proliferation and de-etiolated growth in the dark. While these phenotypes were correlated with higher levels of cytokinin, the actual mechanism of how cytokinin is elevated was not elucidated before. In order to understand if the increased cytokinin is a result of increased biosynthesis or decreased degradation we have compared the synthesis of cytokinins from radiolabelled adenine and the degradation of zeatin ribosides and other cytokinins between amp1 and wild type plants. The degradation of the hormone is not affected in the mutant but there is a 4 to 6 fold increase in cytokinin synthesis compared to the wild type. Because the amp1 mutant is recessive we hypothesise that the AMP1 product negatively regulates cytokinin production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号