首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperthermic inhibition of cellular DNA synthesis, i.e., reduction in replicon initiation and delay in DNA chain elongation, was previously postulated to be involved in the induction of chromosomal aberrations believed to be largely responsible for killing S-phase cells. Utilizing asynchronous Chinese hamster ovary cells heated for 15 min at 45.5 degrees C, an increase in single-stranded regions in replicating DNA (as measured by BND-cellulose chromatography) persisted in heated cells for as long as replicon initiation was affected. Alkaline sucrose gradient analyses of cells pulse-labeled immediately after heating with [3H]thymidine and subsequently chased at 37 degrees C revealed that these S-phase cells can eventually complete elongation of the replicons in operation at the time of heating, but required about six times as long relative to control cells which completed replicon elongation within 4 h. DNA chain elongation into multicluster-sized molecules was prevented for up to 18 h in these heated cells, resulting in a buildup of cluster-sized molecules (approximately 120-160 S) mainly because of the long-term heat damage to the replicon initiation process. Utilizing bromodeoxyuridine (BrdU)-propidium iodide bivariate analysis on a flow cytometer to measure cell progression, control cells pulsed with BrdU and chased in unlabeled medium progressed through S and G2M with cell division starting after 2 h of chase time. In contrast, the majority of the heated S-phase cells progressed slowly and remained blocked in S phase for about 18 h before cell division was observed after 24 h postheat. Our findings suggest that possible sites for where the chromosomal aberrations may be occurring in heated S-phase cells are either (1) at the persistent single-stranded DNA regions or (2) at the regions between clusters of replicons, because this long-term heat damage to the DNA replication process might lead to many opportunities for abnormal DNA and/or protein exchanges to occur at these two sites.  相似文献   

2.
DNA synthesis in 6 ataxia langiectasia (AT) cell strains was much more resistant to X-irradiation than was DNA synthesis in normal human diploid cells. 3 of the cell strains tested have been classified as proficient in repair replication. These data, along with those reported elsewhere, strongly suggest that radioresistant DNA synthesis is an intrinsic feature of this disease.The radioresistance of DNA synthesis in AT cells is primarily due to a reduced inhibition of replicon initiation compared to that occuring in normal cells, but DNA chain elongation is also more radioresistant in AT cells. The small inhibition of DNA synthesis that does occur in AT cells at doses up to 2000 rad is almost exclusively due to inhibition of replicon initiation and not to inhibition of chain elongation, as would be expected from results with normal human cells or from previous studies with established cell lines.  相似文献   

3.
Exposure of cells to ionizing radiation inhibits DNA replication in a dose-dependent manner. The dose response is biphasic and the initial steep component reflects inhibition of replicon initiation thought to be mediated by activation of the S-phase checkpoint. In mammalian cells, inhibition of replicon initiation requires the ataxia telagiectasia mutated (ATM) gene, a member of the phosphatidyl inositol kinase-like (PIKL) family of protein kinases. We studied the effect on replicon initiation of another member of the PI-3 family of protein kinases, the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) by measuring either total DNA synthesis, or size distribution of nascent DNA using alkaline sucrose gradient centrifugation. Exposure of human cells proficient in DNA-PKcs (HeLa or M059-K) to 10 Gy inhibited replicon initiation in a time-dependent manner. Inhibition was at a maximum 1 h after irradiation and recovered at later times. Similar treatment of human cells deficient in DNA-PKcs (M059-J) inhibited replicon initiation to a similar level and with similar kinetics; however, no evidence for recovery, or only limited recovery, was observed for up to 8 h after irradiation. In addition a defect was observed in the maturation of nascent DNA. Similarly, a Chinese hamster cell line deficient in DNA-PKcs (irs-20) showed little evidence for recovery of DNA replication inhibition up to 6 h after irradiation, whereas the parental CHO cells showed significant recovery and an irs-20 derivative expressing the human DNA-PKcs complete recovery within 4 h. Normal kinetics of recovery were observed in xrs-5 cells, deficient in Ku80; in 180BR cells, deficient in DNA ligase IV; as well as XR-1 cells, deficient in XRCC4, an accessory factor of DNA ligase IV. Since all these cell lines share the DNA double strand break rejoining defect of M059-J and irs20 cells, the lack of recovery of DNA replication in the latter cells may not be attributed entirely to the prolonged presence of unrepaired DNA dsb. We propose that DNA-PKcs, in addition to its functions in the rejoining of DNA dsb and in DNA replication, also operates in a pathway that in normal cells facilitates recovery of DNA replication after irradiation.  相似文献   

4.
L F Povirk  I H Goldberg 《Biochemistry》1982,21(23):5857-5862
Treatment of CHO cells with low doses of the protein antibiotic neocarzinostatin severely inhibited DNA replicon initiation but had no effect on chain elongation. The selectivity of the effect on initiation, which was greater than that seen with other chemical agents and comparable to that seen with X-rays, explains the biphasic dose response seen for DNA synthesis inhibition by this drug. Parallel experiments employing the nucleoid sedimentation technique indicated that half-maximal relaxation of domains of DNA supercoiling and half-maximal inhibition of replicon initiation required the same dose of neocarzinostatin, approximately 0.03 micrograms/mL. These results, similar results obtained with the protein antibiotic auromomycin, and previous results obtained with X-rays suggest a quantitative correlation between inhibition of replicon initiation and induction of sufficient strand breakage to relax domains of supercoiling in DNA of mammalian cells. Results in human ataxia telangiectasia fibroblasts indicated that neocarzinostatin, like X-rays, is much less effective in inhibiting DNA synthesis in these cells than in normal human fibroblasts. This finding is consistent with the hypothesis that the genetic defect in ataxia telangiectasia involves a failure to recognize the presence of strand breaks in cellular DNA.  相似文献   

5.
The rate of DNA synthesis after gamma-irradiation was studied either by analysis of the steady-state distribution of daughter [3H]DNA in alkaline sucrose gradients or by direct assay of the amount of [3H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of gamma-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations.  相似文献   

6.
The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [3H]DNA in alkaline sucrose gradients or by direct assay of the amount of [3H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations.  相似文献   

7.
Oxygen dependence of nuclear DNA replication in Ehrlich ascites cells   总被引:1,自引:0,他引:1  
Oxygen was excluded from cultured Ehrlich ascites cells for 5-7 h and then readmitted. During the anaerobic period and for about 1 h following reoxygenation the DNA synthesis of the cells was studied by determining the DNA synthesis rate from [3H] thymidine incorporation data, by evaluation of the thymidine (pulse labelling) index, by DNA fibre autoradiography, and by alkaline sucrose gradients in order to follow the maturation of the daughter chains. The DNA synthesis rate was found to decay to a few percent of the initial value within 5-7 h after deoxygenation. Immediately after reoxygenation it increased to exceed the control level within 0.5-1 h. The only partial process of the genome replication definitely responding to deoxygenation/reoxygenation was the initiation of new replicon units, while progress of the replication forks and maturation of the new daughter chains were not significantly affected. The coordination of replicon initiation within groups or clusters was maintained throughout. The interruption of replication at the level of initiation of clusters upon deoxygenation was interpreted as a regulatory response of the cells to ensure basic viability under unfavourable conditions.  相似文献   

8.
The influence of Staphylococcus alpha-toxin has been investigated on the duration of S-phase of lymphocyte mitotic cycle and on DNA replication in human fibroblasts in vitro. The duration of the S-phase of lymphocytes was measured by counting labeled metaphases and by making replication curves. Alpha-toxin in a dose of 3 micrograms/ml enhances the onset of S-phase, which is inhibited at a dose of 33 micrograms/ml of alpha-toxin. The action of alpha-toxin resulted in a decreased rate of replication fork and in a progressive activation of replicon groups. This effect was most prominent at 33 micrograms/ml of alpha-toxin. The data obtained allow to suggest that immunodeficiency of the second order, so characteristic of the staphylococcal sepsis, may be due, in many respects, to suppression of DNA replication.  相似文献   

9.
It has recently been shown that the tumor suppressor p53 mediates a signal transduction pathway that responds to DNA damage by arresting cells in the late G1 period of the cell cycle. However, the operation of this pathway alone cannot explain the 50% reduction in the rate of DNA synthesis that occurs within 30 min of irradiation of an asynchronous cell population. We are using the amplified dihydrofolate reductase (DHFR) domain in the methotrexate-resistant CHO cell line, CHOC 400, as a model replicon in which to study this acute radiation effect. We first show that the CHOC 400 cell line retains the classical acute-phase response but does not display the late G1 arrest that characterizes the p53-mediated checkpoint. Using a two-dimensional gel replicon-mapping method, we then show that when asynchronous cultures are irradiated with 900 cGy, initiation in the DHFR locus is completely inhibited within 30 min and does not resume for 3 to 4 h. Since initiation in this locus occurs throughout the first 2 h of the S period, this result implies the existence of a p53-independent S-phase damage-sensing pathway that functions at the level of individual origins. Results obtained with the replication inhibitor mimosine define a position near the G1/S boundary beyond which cells are unable to prevent initiation at early-firing origins in response to irradiation. This is the first direct demonstration at a defined chromosomal origin that radiation quantitatively down-regulates initiation.  相似文献   

10.
11.
The synergistic cytotoxic activity exhibited by bifunctional alkylating agents in the presence of methylxanthines has been associated with methylxanthine-induced reversal of alkylator-induced DNA replicon initiation inhibition. This has also been seen with methylxanthines and ionizing irradiation. Methylxanthines do not appear exacerbate drug or ionizing radiation-induced damage. We report here a situation in which methylxanthine-induced reversal of DNA replicon initiation inhibition is not associated with increased cytotoxicity of the alkylator. Murine L1210 leukemia cells were assayed for cytotoxicity following treatment with either L-PAM or cis-DDP in the presence or absence of theophylline. Theophylline increased the cytotoxicity seen after L-PAM treatment but failed to increase the cis-DDP induced cytotoxicity. Analysis of pulse-labeled DNA on alkaline sucrose gradients revealed the expected decrease in DNA replicon initiation in L1210 cells treated with either L-PAM or cis-DDP. Theophylline had no effect on replicon initiation in untreated cells. Theophylline reversed the replicon initiation inhibition in cells treated with either L-PAM or cis-DDP. The reason for the apparent lack of added toxicity of the replicon initiation inhibition reversal in L1210 cells treated with theophylline and DDP is unknown.  相似文献   

12.
13.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

14.
The effect of various fractions of chalone-containing preparation from ascite Ehrlich's tumour obtained by gel filtration on ultragel Ac-A-44 on mitotic activity and DNA synthesis in the tumour has been studied. The chalone-containing preparation (alcohol precipitate) was shown to suppress entering of tumour cells into M- and S-phase and DNA synthesis. After gel filtration, the partial division of active chalone component which inhibits entering of cells into M- and S-phase took place. The component inhibiting DNA synthesis eluted with G1-chalone.  相似文献   

15.
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.  相似文献   

16.
D Suciu 《Mutation research》1990,243(3):213-218
In this study, some DNA topoisomerase II and gyrase inhibitors have been identified as inhibitors of polymerization of deoxyribonucleotides [novobiocin (NVB), nalidixic acid (NDA), oxolinic acid (OXA)], or inhibitors of replicon initiation and DNA-chain elongation [etoposide (VP-16), teniposide (VM-26), 4'-(9-acridinylamino)methansulfon-m-anisidine (m-AMSA), ellipticine (ELT)]. The inhibitors of deoxyribonucleotide polymerization produced a significant (greater than 85%) suppression of [3H]thymidine incorporation into V79 cells within 20 min of treatment, followed by a rapid recovery of DNA synthesis, and reduced cell killing. In contrast, the inhibitors of replicon initiation and DNA-chain elongation needed about 60 min to induce a partial, but irreversible inhibition of DNA replication, associated with extensive cell killing.  相似文献   

17.
Treatment of normal human fibroblasts (NHFs) with cycloheximide, which inhibits protein synthesis, resulted in partial inhibition of their DNA synthesis, as determined by incorporation of radioactive thymidine and resistance of the cells to subsequent treatment with bleomycin. The effects of treatments of ataxia telangiectasia fibroblasts (ATFs) with cycloheximide and then bleomycin on their DNA synthesis were very similar to those on DNA synthesis of NHFs. The fact that treatment with bleomycin only caused transient inhibition of DNA synthesis within an hour in NHFs but not ATFs was confirmed. Studies by alkali-density gradient centrifugation showed that the cycloheximide mainly inhibited formation of short fragments of DNA in both NHFs and ATFs, as bleomycin does in NHFs. These findings suggest that these two chemicals both inhibit replicon initiation, and thus provide evidence that the genetic defect in ATFs is related to replicon initiation.  相似文献   

18.
Analysis of DNA synthesis rate of cultured cells from flow cytometric data   总被引:1,自引:0,他引:1  
The rate of DNA synthesis along S phase is estimated from flow cytometric histograms on the basis of a mathematical model of a cell population. In the absence of loss, the model expresses the population kinetics in terms of DNA synthesis rate, S-phase influx, and population size. A single histogram is sufficient to determine the DNA synthesis rate when the population is in balanced exponential growth. Two suitably chosen histograms are necessary if the S-phase influx is exponential in a time interval longer than the S-phase duration. The analysis procedure was tested on published autoradiographic data and applied to three cultured cell lines (CM-S, 3LL, and M14 cells) that show various patterns of DNA distribution. In each case the cell-cycle fractions, the DNA synthesis rate, and the S-phase duration were obtained.  相似文献   

19.
The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells were accompanied by a lack of inhibition of DNA synthesis (replicon initiation) neither γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative.  相似文献   

20.
The parameters of DNA replicon synthesis have been examined at successive stages in the S period of synchronised Sorex araneus (S3/4) cells in culture by DNA fibre autoradiography. Both mean rate of chain growth and distance between initiation sites remain constant. There is, however, an indication that during mid-S, when cells are subjected to the maximum utilization of the DNA-elongating system, there is a slight reduction in the rate of chain elongation, particularly among the faster growing chains of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号