首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different point mutations in the nucleolar protein fibrillarin (Nop1p in Saccharomyces cerevisiae) can inhibit different steps in ribosome synthesis. A screen for mutations that are synthetically lethal (sl) with the nop1-5 allele, which inhibits pre-rRNA processing, identified NOP56. An independent sl mutation screen with nop1-3, which inhibits pre-rRNA methylation, identified a mutation in NOP58. Strikingly, Nop56p and Nop58p are highly homologous (45% identity). Both proteins were found to be essential and localized to the nucleolus. A temperature-sensitive lethal mutant allele, nop56-2, inhibited many steps in pre-rRNA processing, particularly on the pathway of 25S/5.8S rRNA synthesis, and led to defects in 60S subunit assembly. Epitope-tagged constructs show that both Nop56p and Nop58p are associated with Noplp in complexes, Nop56p and Nop1p exhibiting a stoichiometric association. These physical interactions presumably underlie the observed sl phenotypes. Well-conserved homologs are present in a range of organisms, including humans (52% identity between human hNop56p and yeast Nop56p), suggesting that these complexes have been conserved in evolution.  相似文献   

2.
Numerous non-ribosomal trans-acting factors involved in pre-ribosomal RNA processing have been characterized, but none of them is specifically required for the last cytoplasmic steps of 18S rRNA maturation. Here we demonstrate that Rio1p/Rrp10p is such a factor. Previous studies showed that the RIO1 gene is essential for cell viability and conserved from archaebacteria to man. We isolated a RIO1 mutant in a screen for mutations synthetically lethal with a mutant allele of GAR1, an essential gene required for 18S rRNA production and rRNA pseudouridylation. We show that RIO1 encodes a cytoplasmic non-ribosomal protein, and that depletion of Rio1p blocks 18S rRNA production leading to 20S pre-rRNA accumulation. In situ hybridization reveals that, in Rio1p depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. This strongly suggests that Rio1p is involved in the cytoplasmic cleavage of 20S pre-rRNA at site D, producing mature 18S rRNA. Thus, Rio1p has been renamed Rrp10p (ribosomal RNA processing #10). Rio1p/Rrp10p is the first non-ribosomal factor characterized specifically required for 20S pre-rRNA processing.  相似文献   

3.
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rai1p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and 3'-end processing pathways. These findings suggest that Rai1p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.  相似文献   

4.
5.
Bax R  Raué HA  Vos JC 《RNA (New York, N.Y.)》2006,12(11):2005-2013
Slx9p (Ygr081cp) is a nonessential yeast protein previously linked genetically with the DNA helicase Sgs1p. Here we report that Slx9p is involved in ribosome biogenesis in the yeast Saccharomyces cerevisiae. Deletion of SLX9 results in a mild growth defect and a reduction in the level of 18S rRNA. Co-immunoprecipitation experiments showed that Slx9p is associated with 35S, 23S, and 20S pre-rRNA, as well as U3 snoRNA and, thus, is a bona fide component of pre-ribosomes. The most striking effects on pre-rRNA processing resulting from deletion of SLX9 is the accumulation of the mutually exclusive 21S and 27SA2 pre-rRNA. Furthermore, deletion of SLX9 is synthetically lethal with mutations in Rrp5p that block cleavage at either site A2 or A3. We conclude that Slx9p has a unique role in the processing events responsible for separating the 66S and 43S pre-ribosomal particles. Interestingly, homologs of Slx9p were found only in other yeast species, indicating that the protein has been considerably less well conserved during evolution than the majority of trans-acting processing factors.  相似文献   

6.
The 17 putative RNA helicases required for pre-rRNA processing are predicted to play a crucial role in ribosome biogenesis by driving structural rearrangements within preribosomes. To better understand the function of these proteins, we have generated a battery of mutations in five putative RNA helicases involved in 18S rRNA synthesis and analyzed their effects on cell growth and pre-rRNA processing. Our results define functionally important residues within conserved motifs and demonstrate that lethal mutations in predicted ATP binding-hydrolysis motifs often confer a dominant negative phenotype in vivo when overexpressed in a wild-type background. We show that dominant negative mutants delay processing of the 35S pre-rRNA and cause accumulation of pre-rRNA species that normally have low steady-state levels. Our combined results establish that not all conserved domains function identically in each protein, suggesting that the RNA helicases may have distinct biochemical properties and diverse roles in ribosome biogenesis.  相似文献   

7.
During the functional analysis of open reading frames (ORFs) identified during the sequencing of chromosome III of Saccharomyces cerevisiae, the previously uncharacterized ORF YCL031C (now designated RRP7) was deleted. RRP7 is essential for cell viability, and a conditional null allele was therefore constructed, by placing its expression under the control of a regulated GAL promoter. Genetic depletion of Rrp7p inhibited the pre-rRNA processing steps that lead to the production of the 20S pre-rRNA, resulting in reduced synthesis of the 18S rRNA and a reduced ratio of 40S to 60S ribosomal subunits. A screen for multicopy suppressors of the lethality of the GAL::rrp7 allele isolated the two genes encoding a previously unidentified ribosomal protein (r-protein) that is highly homologous to the rat r-protein S27. When present in multiple copies, either gene can suppress the lethality of an RRP7 deletion mutation and can partially restore the ribosomal subunit ratio in Rrp7p-depleted cells. Deletion of both r-protein genes is lethal; deletion of either single gene has an effect on pre-rRNA processing similar to that of Rrp7p depletion. We believe that Rrp7p is required for correct assembly of rpS27 into the preribosomal particle, with the inhibition of pre-rRNA processing appearing as a consequence of this defect.  相似文献   

8.
The nucleolus, the site of pre-ribosomal RNA (pre-rRNA) synthesis and processing in eukaryotic cells, contains a number of small nucleolar RNAs (snoRNAs). Yeast U3 snoRNA is required for the processing of 18S rRNA from larger precursors and contains a region complementary to the pre-rRNA. Substitution mutations in the pre-rRNA which disrupt this base pairing potential are lethal and prevent synthesis of 18S rRNA. These mutant pre-rRNAs show defects in processing which closely resemble the effects of genetic depletion of components of the U3 snoRNP. Co-expression of U3 snoRNAs which carry compensatory mutations allows the mutant pre-rRNAs to support viability and synthesize 18S rRNA at high levels. Pre-rRNA processing steps which are blocked by the external transcribed spacer region mutations are largely restored by expression of the compensatory U3 mutants. Pre-rRNA processing therefore requires direct base pairing between snoRNA and the substrate. Base pairing with the substrate is thus a common feature of small RNAs involved in mRNA and rRNA maturation.  相似文献   

9.
The SSU processome is required for production of the small ribosomal subunit RNA, the 18S rRNA. Specifically, the U3 small nucleolar RNA (snoRNA) component of the SSU processome is essential for the formation of the conserved central pseudoknot and for cleavages of the pre-rRNA, both of which are required for 18S maturation. To further elucidate how these events are mediated, we examined the regulatory and mechanistic roles of the U3 specific proteins: Imp3p, Imp4p, and Mpp10p. We found that these proteins demonstrated an interdependence with respect to their stability and to their association with the U3 snoRNA. Because mutations in the U3 snoRNA that disrupt pre-rRNA processing confer similar defects on growth and pre-rRNA processing as do carboxy-terminal truncations of Mpp10p, we hypothesized that Mpp10p may be involved in maintaining U3 snoRNA-pre-rRNA base pairing. However, combining the two mutations resulted in a more pronounced cleavage defect at site A(2), suggesting that Mpp10p is also required at an additional mechanistic step. Furthermore, heterologous complementation experiments demonstrate that the last 95 amino acids of yeast Mpp10p are specifically required for growth and pre-rRNA processing at low temperatures.  相似文献   

10.
Saccharomyces cerevisiae contains three nonessential genes (NGL1, NGL2, and NGL3) that encode proteins containing a domain with similarity to a Mg(2+)-dependent endonuclease motif present in the mRNA deadenylase Ccr4p. We have investigated a possible role of these proteins in rRNA processing, because for many of the pre-rRNA processing steps, the identity of the responsible nuclease remains elusive. Analysis of RNA isolated from cells in which the NGL2 gene has been inactivated (ngl2delta) demonstrates that correct 3'-end formation of 5.8S rRNA at site E is strictly dependent on Ngl2p. No role in pre-rRNA processing could be assigned to Ngl1p and Ngl3p. The 3'-extended 5.8S rRNA formed in the ngl2delta mutant is slightly shorter than the 6S precursor previously shown to accumulate upon combined deletion of the 3' --> 5' exonuclease-encoding REX1 and REX2 genes or upon depletion of the exosomal subunits Rrp40p or Rrp45p. Thus, our data add a further component to the set of nucleases required for correct 3'-end formation of yeast 5.8S rRNA.  相似文献   

11.
Rrp5p is the only protein so far known to be required for the processing of yeast pre-rRNA at both the early sites A0, A1 and A2 leading to 18S rRNA and at site A3, the first step specific for the pathway leading to 5.8S/25S rRNA. Previous in vivo mutational analysis of Rrp5p demonstrated that the first 8 of its 12 S1 RNA-binding motifs are involved in the formation of the 'short' form of 5.8S rRNA (5.8S(S)), which is the predominant species under normal conditions. We have constructed two strains in which the genomic RRP5 gene has been replaced by an rrp5 deletion mutant lacking either S1 motifs 3-5 (rrp5-Delta3) or 5-8 (rrp5-Delta4). The first mutant synthesizes almost exclusively 5.8S(L) rRNA, whereas the second one still produces a considerable amount of the 5.8S(S) species. Nevertheless, both mutations were found to block cleavage at site A3 completely. Instead, a novel processing event occurs at a site in a conserved stem-loop structure located between sites A2 and A3, which we have named A4. A synthetic lethality screen using the rrp5-Delta3 and rrp-Delta4 mutations identified the REX4 gene, which encodes a non-essential protein belonging to a class of related yeast proteins that includes several known 3'-->5' exonucleases. Inactivation of the REX4 gene in rrp5-Delta3 or rrp-Delta4 cells abolished cleavage at A4, restored cleavage at A3 and returned the 5.8S(S):5.8S(L) ratio to the wild-type value. The sl phenotype of the rrp5Delta/rex4(-) double mutants appears to be due to a severe disturbance in ribosomal subunit assembly, rather than pre-rRNA processing. The data provide direct evidence for a crucial role of the multiple S1 motifs of Rrp5p in ensuring the correct assembly and action of the processing complex responsible for cleavage at site A3. Furthermore, they clearly implicate Rex4p in both pre-rRNA processing and ribosome assembly, even though this protein is not essential for yeast.  相似文献   

12.
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.  相似文献   

13.
14.
Chemical modifications and processing of the 18S, 5.8S, and 25S ribosomal RNAs from the 35S pre-ribosomal RNA depend on an important set of small nucleolar ribonucleoprotein particles (snoRNPs). Genetic depletion of yeast Gar1p, an essential common component of H/ACA snoRNPs, leads to inhibition of uridine isomerizations to pseudo-uridines on the 35S pre-rRNA and of the early pre-rRNA cleavages at sites A1 and A2, resulting in a loss of mature 18S rRNA synthesis. To identify Gar1p functional partners, we screened for mutations that are synthetically lethal with a gar1 mutant allele encoding a Gar1p mutant protein lacking its two glycine/arginine-rich (GAR) domains. We identified a previously uncharacterized Saccharomyces cerevisiae open reading frame, YDR083W (now designated RRP8), that encodes a highly conserved protein containing motifs found in methyltransferases. Rrp8p localizes to the nucleolus. A yeast strain lacking this protein is viable at 30 degrees C but displays strong growth impairment at lower temperatures. In this strain, cleavage of the pre-rRNA at site A2 is strongly affected whereas cleavages at sites A0 and A1 are only slightly inhibited or delayed.  相似文献   

15.
B Dichtl  A Stevens    D Tollervey 《The EMBO journal》1997,16(23):7184-7195
Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+ in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'-->3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yeast strain also inhibits the exonucleases, as a result of pAp accumulation due to inhibition of Hal2p; 5' processing of the 5.8S rRNA and snoRNAs, degradation of pre-rRNA spacer fragments and mRNA turnover are inhibited. Lithium also inhibits the activity of RNase MRP by a mechanism which is not mediated by pAp. A mutation in the RNase MRP RNA confers Li+ hypersensitivity and is synthetically lethal with mutations in either HAL2 or XRN1. We propose that Li+ toxicity in yeast is due to synthetic lethality evoked between Xrn1p and RNase MRP. Similar mechanisms may contribute to the effects of Li+ on development and in human neurobiology.  相似文献   

16.
NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A' to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.  相似文献   

17.
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.  相似文献   

18.
Rrp5p is the only ribosomal RNA processing trans-acting factor that is required for the synthesis of both 18S and 5.8S rRNAs in Saccharomyces cerevisiae. Mutational analyses have characterized modified forms of Rrp5p that either affect formation of 18S rRNA by inhibiting cleavage at sites A0/A1/A2, or synthesis of 5.8S rRNA by inhibiting cleavage at site A3. Here, we examine the rRNA maturation process associated with a RRP5 bipartite allele that codes for two noncontiguous parts of the protein. This slow-growing bipartite mutant has a unique rRNA-processing phenotype that proceeds without endonucleolytic cleavage at site A2. In wild-type cells, the A2 cleavage takes place on the 32S pre-rRNA and is responsible for the formation of 20S and 27SA2 species, the precursors of mature 18S and 5.8S/25S rRNAs, respectively. In the bipartite strain, such precursors were not detectable as judged by Northern analysis or in vivo labeling. They were replaced by the aberrant 21S species and the bypassing 27SA3 precursor, both descended from direct cleavage of 32S pre-rRNA at site A3, which provides an alternative rRNA maturation pathway in this strain. The 21S pre-rRNA is the sole detectable and most likely available precursor of 18S rRNA in this particular strain, indicating that 18S rRNA can be directly produced from 21S. Furthermore, 21S species were found associated with 43S preribosomal particles as similarly observed for the 20S pre-rRNA in the wild-type cells.  相似文献   

19.
20.
G. R. Fabian  S. M. Hess    A. K. Hopper 《Genetics》1990,124(3):497-504
We define a new gene, SRD1, involved in the processing of pre-rRNA to mature rRNA. The SRD1 gene was identified by selecting for second-site suppressors of the previously described rrp1-1 mutation. The rrp1-1 mutation causes temperature-sensitive growth, a conditional defect in processing of 27S pre-rRNA to mature 25S rRNA, and a nonconditional increase in sensitivity to several aminoglycoside antibiotics. All srd1 alleles identified are recessive and apparently specific to the rrp1-1 mutation. Although a mutation of SRD1 suppresses the pre-rRNA processing defect, drug sensitivity and thermolethality of a point mutation of RRP1, it is unable to suppress a rrp1-disruption allele. We suggest that the SRD1 gene product either interacts with or regulates the RRP1 product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号